Propelling microdroplets generated and sustained by liquid-liquid phase separation in confined spaces.
Soft Matter
; 17(21): 5362-5374, 2021 Jun 02.
Article
en En
| MEDLINE
| ID: mdl-33956922
Flow transport in confined spaces is ubiquitous in technological processes, ranging from separation and purification of pharmaceutical ingredients by microporous membranes and drug delivery in biomedical treatment to chemical and biomass conversion in catalyst-packed reactors and carbon dioxide sequestration. In this work, we suggest a distinct pathway for enhanced liquid transport in a confined space via propelling microdroplets. These microdroplets can form spontaneously from localized liquid-liquid phase separation as a ternary mixture is diluted by a diffusing poor solvent. High speed images reveal how the microdroplets grow, break up and propel rapidly along the solid surface, with a maximal velocity up to â¼160 µm s-1, in response to a sharp concentration gradient resulting from phase separation. The microdroplet propulsion induces a replenishing flow between the walls of the confined space towards the location of phase separation, which in turn drives the mixture out of equilibrium and leads to a repeating cascade of events. Our findings on the complex and rich phenomena of propelling droplets suggest an effective approach to enhanced flow motion of multicomponent liquid mixtures within confined spaces for time effective separation and smart transport processes.
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Preparaciones Farmacéuticas
/
Espacios Confinados
Idioma:
En
Revista:
Soft Matter
Año:
2021
Tipo del documento:
Article