Your browser doesn't support javascript.
loading
Precision test of statistical dynamics with state-to-state ultracold chemistry.
Liu, Yu; Hu, Ming-Guang; Nichols, Matthew A; Yang, Dongzheng; Xie, Daiqian; Guo, Hua; Ni, Kang-Kuen.
Afiliación
  • Liu Y; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA. yu.liu-1@colorado.edu.
  • Hu MG; Department of Physics, Harvard University, Cambridge, MA, USA. yu.liu-1@colorado.edu.
  • Nichols MA; Harvard-MIT Center for Ultracold Atoms, Cambridge, MA, USA. yu.liu-1@colorado.edu.
  • Yang D; Time and Frequency Division, National Institute of Standards and Technology, Boulder, CO, USA. yu.liu-1@colorado.edu.
  • Xie D; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
  • Guo H; Department of Physics, Harvard University, Cambridge, MA, USA.
  • Ni KK; Harvard-MIT Center for Ultracold Atoms, Cambridge, MA, USA.
Nature ; 593(7859): 379-384, 2021 05.
Article en En | MEDLINE | ID: mdl-34012086
Chemical reactions represent a class of quantum problems that challenge both the current theoretical understanding and computational capabilities1. Reactions that occur at ultralow temperatures provide an ideal testing ground for quantum chemistry and scattering theories, because they can be experimentally studied with unprecedented control2, yet display dynamics that are highly complex3. Here we report the full product state distribution for the reaction 2KRb → K2 + Rb2. Ultracold preparation of the reactants allows us complete control over their initial quantum degrees of freedom, whereas state-resolved, coincident detection of both products enables the probability of scattering into each of the 57 allowed rotational state-pairs to be measured. Our results show an overall agreement with a state-counting model based on statistical theory4-6, but also reveal several deviating state-pairs. In particular, we observe a strong suppression of population in the state-pair closest to the exoergicity limit as a result of the long-range potential inhibiting the escape of products. The completeness of our measurements provides a benchmark for quantum dynamics calculations beyond the current state of the art.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Nature Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Nature Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos