Your browser doesn't support javascript.
loading
Interactive assessment of lignite and bamboo-biochar for geochemical speciation, modulation and uptake of Cu and other heavy metals in the copper mine tailing.
Munir, Mehr Ahmed Mujtaba; Irshad, Samina; Yousaf, Balal; Ali, Muhammad Ubaid; Dan, Chen; Abbas, Qumber; Liu, Guijian; Yang, Xiaoe.
Afiliación
  • Munir MAM; Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Zijingang Campus, Yuhangtang Road 866, Hangzhou 310058, China; CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Sp
  • Irshad S; CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, S
  • Yousaf B; CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, S
  • Ali MU; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, and State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518000,
  • Dan C; Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Zijingang Campus, Yuhangtang Road 866, Hangzhou 310058, China. Electronic address: dancyjz@zju.edu.cn.
  • Abbas Q; Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China. Electronic address: qumber@mail.ustc.edu.cn.
  • Liu G; CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, S
  • Yang X; Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Zijingang Campus, Yuhangtang Road 866, Hangzhou 310058, China. Electronic address: xeyang@zju.edu.cn.
Sci Total Environ ; 779: 146536, 2021 Jul 20.
Article en En | MEDLINE | ID: mdl-34030257
ABSTRACT
This study was designed to examine the combined effect of bamboo-biochar (BC) and water-washed lignite (LGT) at copper mine tailings (CuMT) sites on the concentration of Cu and other metals in pore water (PW), their bioavailability, and change in geochemical speciation. Rapeseed (first cropping-season) and wheat (second cropping-season) were grown for 40-days each and the influence of applied-amendments on both cropping seasons was observed and compared. A significant increase in pH, water holding capacity (WHC), and soil organic carbon (SOC) was observed after the applied amendments in second cropping-seasons. The BC-LGT significantly reduced the concentration of Cu in PW after second cropping seasons; however, the concentration of Pb and Zn were increased with the individual application of biochar and LGT, respectively. BC-LGT and BC-2% significantly reduced the bioavailability of Cu and other HMs in both cropping seasons. The treated-CuMT was subjected to spectroscopic investigation through X-ray photoelectron spectroscopy (XPS), Fourier transform Infrared spectroscopy (FTIR), and X-ray powder diffraction (XRD). The results showed that Cu sorption mainly involved the coordination with hydroxyl and carboxyl functional groups, as well as the co-precipitation or complexation on mineral surfaces, which vary with the applied amendment and bulk amount of Mg, Mn, and Fe released during sorption-process. The co-application of BC-LGT exerted significant effectiveness in immobilizing Cu and other HMs in CuMT. The outcomes of the study indicated that co-application of BC-LGT is an efficacious combination of organic and inorganic materials for Cu adsorption which may provide some new information for the sustainable remediation of copper mine tailing.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Contaminantes del Suelo / Metales Pesados Idioma: En Revista: Sci Total Environ Año: 2021 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Contaminantes del Suelo / Metales Pesados Idioma: En Revista: Sci Total Environ Año: 2021 Tipo del documento: Article