Your browser doesn't support javascript.
loading
Dynamic reaction-induced phase separation in tunable, adaptive covalent networks.
Herbert, Katie M; Getty, Patrick T; Dolinski, Neil D; Hertzog, Jerald E; de Jong, Derek; Lettow, James H; Romulus, Joy; Onorato, Jonathan W; Foster, Elizabeth M; Rowan, Stuart J.
Afiliación
  • Herbert KM; Pritzker School of Molecular Engineering, University of Chicago Chicago IL 60637 USA stuartrowan@uchicago.edu.
  • Getty PT; Pritzker School of Molecular Engineering, University of Chicago Chicago IL 60637 USA stuartrowan@uchicago.edu.
  • Dolinski ND; Pritzker School of Molecular Engineering, University of Chicago Chicago IL 60637 USA stuartrowan@uchicago.edu.
  • Hertzog JE; Department of Chemistry, University of Chicago Chicago IL 60637 USA.
  • de Jong D; The University of Chicago Laboratory Schools 1362 E. 59th St. Chicago IL 60637 USA.
  • Lettow JH; Pritzker School of Molecular Engineering, University of Chicago Chicago IL 60637 USA stuartrowan@uchicago.edu.
  • Romulus J; Department of Macromolecular Science and Engineering, Case Western Reserve University 2100 Adelbert Road Cleveland OH 44106 USA.
  • Onorato JW; Department of Macromolecular Science and Engineering, Case Western Reserve University 2100 Adelbert Road Cleveland OH 44106 USA.
  • Foster EM; Department of Macromolecular Science and Engineering, Case Western Reserve University 2100 Adelbert Road Cleveland OH 44106 USA.
  • Rowan SJ; Pritzker School of Molecular Engineering, University of Chicago Chicago IL 60637 USA stuartrowan@uchicago.edu.
Chem Sci ; 11(19): 5028-5036, 2020 May 01.
Article en En | MEDLINE | ID: mdl-34122959
ABSTRACT
A series of catalyst-free, room temperature dynamic bonds derived from a reversible thia-Michael reaction are utilized to access mechanically robust dynamic covalent network films. The equilibrium of the thiol addition to benzalcyanoacetate-based Michael-acceptors can be directly tuned by controlling the electron-donating/withdrawing nature of the Michael-acceptor. By modulating the composition of different Michael-acceptors in a dynamic covalent network, a wide range of mechanical properties and thermal responses can be realized. Additionally, the reported systems phase-separate in a process, coined dynamic reaction-induced phase separation (DRIPS), that yields reconfigurable phase morphologies and reprogrammable shape-memory behaviour as highlighted by the heat-induced folding of a predetermined structure.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Chem Sci Año: 2020 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Chem Sci Año: 2020 Tipo del documento: Article