Your browser doesn't support javascript.
loading
Interpretable Neuron Structuring with Graph Spectral Regularization.
Tong, Alexander; van Dijk, David; Stanley, Jay S; Amodio, Matthew; Yim, Kristina; Muhle, Rebecca; Noonan, James; Wolf, Guy; Krishnaswamy, Smita.
Afiliación
  • Tong A; Yale Department of Computer Science, New Haven, USA.
  • van Dijk D; Yale Department of Genetics, New Haven, USA.
  • Stanley JS; Yale Department of Genetics, New Haven, USA.
  • Amodio M; Yale Department of Computer Science, New Haven, USA.
  • Yim K; Yale Department of Genetics, New Haven, USA.
  • Muhle R; Yale Department of Genetics, New Haven, USA.
  • Noonan J; Yale Department of Genetics, New Haven, USA.
  • Wolf G; Department of Mathematics and Statistics, Université de Montréal, Mila, Montreal, Canada.
  • Krishnaswamy S; Yale Department of Computer Science, New Haven, USA.
Adv Intell Data Anal ; 12080: 509-521, 2020 Apr.
Article en En | MEDLINE | ID: mdl-34131660
While neural networks are powerful approximators used to classify or embed data into lower dimensional spaces, they are often regarded as black boxes with uninterpretable features. Here we propose Graph Spectral Regularization for making hidden layers more interpretable without significantly impacting performance on the primary task. Taking inspiration from spatial organization and localization of neuron activations in biological networks, we use a graph Laplacian penalty to structure the activations within a layer. This penalty encourages activations to be smooth either on a predetermined graph or on a feature-space graph learned from the data via co-activations of a hidden layer of the neural network. We show numerous uses for this additional structure including cluster indication and visualization in biological and image data sets.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Adv Intell Data Anal Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Adv Intell Data Anal Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos