Your browser doesn't support javascript.
loading
A hybrid of light-field and light-sheet imaging to study myocardial function and intracardiac blood flow during zebrafish development.
Wang, Zhaoqiang; Ding, Yichen; Satta, Sandro; Roustaei, Mehrdad; Fei, Peng; Hsiai, Tzung K.
Afiliación
  • Wang Z; Department of Bioengineering, University of California, Los Angeles, California, United States of America.
  • Ding Y; Division of Cardiology, Department of Medicine, School of Medicine, University of California, Los Angeles, California, United States of America.
  • Satta S; Division of Cardiology, Department of Medicine, School of Medicine, University of California, Los Angeles, California, United States of America.
  • Roustaei M; Department of Bioengineering, University of California, Los Angeles, California, United States of America.
  • Fei P; School of Optical and Electronic Information-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China.
  • Hsiai TK; Department of Bioengineering, University of California, Los Angeles, California, United States of America.
PLoS Comput Biol ; 17(7): e1009175, 2021 07.
Article en En | MEDLINE | ID: mdl-34228702
ABSTRACT
Biomechanical forces intimately contribute to cardiac morphogenesis. However, volumetric imaging to investigate the cardiac mechanics with high temporal and spatial resolution remains an imaging challenge. We hereby integrated light-field microscopy (LFM) with light-sheet fluorescence microscopy (LSFM), coupled with a retrospective gating method, to simultaneously access myocardial contraction and intracardiac blood flow at 200 volumes per second. While LSFM allows for the reconstruction of the myocardial function, LFM enables instantaneous acquisition of the intracardiac blood cells traversing across the valves. We further adopted deformable image registration to quantify the ventricular wall displacement and particle tracking velocimetry to monitor intracardiac blood flow. The integration of LFM and LSFM enabled the time-dependent tracking of the individual blood cells and the differential rates of segmental wall displacement during a cardiac cycle. Taken together, we demonstrated a hybrid system, coupled with our image analysis pipeline, to simultaneously capture the myocardial wall motion with intracardiac blood flow during cardiac development.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Velocidad del Flujo Sanguíneo / Corazón Límite: Animals Idioma: En Revista: PLoS Comput Biol Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Velocidad del Flujo Sanguíneo / Corazón Límite: Animals Idioma: En Revista: PLoS Comput Biol Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos