Your browser doesn't support javascript.
loading
Comparison between Accelerometer and Gyroscope in Predicting Level-Ground Running Kinematics by Treadmill Running Kinematics Using a Single Wearable Sensor.
Chow, Daniel Hung Kay; Tremblay, Luc; Lam, Chor Yin; Yeung, Adrian Wai Yin; Cheng, Wilson Ho Wu; Tse, Peter Tin Wah.
Afiliación
  • Chow DHK; Department of Health & Physical Education, The Education University of Hong Kong, Hong Kong, China.
  • Tremblay L; Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, ON M5S 2W6, Canada.
  • Lam CY; Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
  • Yeung AWY; Department of Health & Physical Education, The Education University of Hong Kong, Hong Kong, China.
  • Cheng WHW; Department of Health & Physical Education, The Education University of Hong Kong, Hong Kong, China.
  • Tse PTW; Department of Health & Physical Education, The Education University of Hong Kong, Hong Kong, China.
Sensors (Basel) ; 21(14)2021 Jul 06.
Article en En | MEDLINE | ID: mdl-34300372
ABSTRACT
Wearable sensors facilitate running kinematics analysis of joint kinematics in real running environments. The use of a few sensors or, ideally, a single inertial measurement unit (IMU) is preferable for accurate gait analysis. This study aimed to use a convolutional neural network (CNN) to predict level-ground running kinematics (measured by four IMUs on the lower extremities) by using treadmill running kinematics training data measured using a single IMU on the anteromedial side of the right tibia and to compare the performance of level-ground running kinematics predictions between raw accelerometer and gyroscope data. The CNN model performed regression for intraparticipant and interparticipant scenarios and predicted running kinematics. Ten recreational runners were recruited. Accelerometer and gyroscope data were collected. Intraparticipant and interparticipant R2 values of actual and predicted running kinematics ranged from 0.85 to 0.96 and from 0.7 to 0.92, respectively. Normalized root mean squared error values of actual and predicted running kinematics ranged from 3.6% to 10.8% and from 7.4% to 10.8% in intraparticipant and interparticipant tests, respectively. Kinematics predictions in the sagittal plane were found to be better for the knee joint than for the hip joint, and predictions using the gyroscope as the regressor were demonstrated to be significantly better than those using the accelerometer as the regressor.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Carrera / Dispositivos Electrónicos Vestibles Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Sensors (Basel) Año: 2021 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Carrera / Dispositivos Electrónicos Vestibles Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Sensors (Basel) Año: 2021 Tipo del documento: Article País de afiliación: China