Your browser doesn't support javascript.
loading
A self-exciting point process to study multicellular spatial signaling patterns.
Verma, Archit; Jena, Siddhartha G; Isakov, Danielle R; Aoki, Kazuhiro; Toettcher, Jared E; Engelhardt, Barbara E.
Afiliación
  • Verma A; Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544.
  • Jena SG; Department of Molecular Biology, Princeton University, Princeton, NJ 08544.
  • Isakov DR; Department of Molecular Biology, Princeton University, Princeton, NJ 08544.
  • Aoki K; National Institute of Basic Biology, National Institutes of Natural Sciences, Okazaki 444-8585, Japan.
  • Toettcher JE; Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki 444-8787, Japan.
  • Engelhardt BE; International Research Collaboration Center, National Institutes of Natural Sciences, Tokyo 105-0001, Japan.
Proc Natl Acad Sci U S A ; 118(32)2021 08 10.
Article en En | MEDLINE | ID: mdl-34362843
Multicellular organisms rely on spatial signaling among cells to drive their organization, development, and response to stimuli. Several models have been proposed to capture the behavior of spatial signaling in multicellular systems, but existing approaches fail to capture both the autonomous behavior of single cells and the interactions of a cell with its neighbors simultaneously. We propose a spatiotemporal model of dynamic cell signaling based on Hawkes processes-self-exciting point processes-that model the signaling processes within a cell and spatial couplings between cells. With this cellular point process (CPP), we capture both the single-cell pathway activation rate and the magnitude and duration of signaling between cells relative to their spatial location. Furthermore, our model captures tissues composed of heterogeneous cell types with different bursting rates and signaling behaviors across multiple signaling proteins. We apply our model to epithelial cell systems that exhibit a range of autonomous and spatial signaling behaviors basally and under pharmacological exposure. Our model identifies known drug-induced signaling deficits, characterizes signaling changes across a wound front, and generalizes to multichannel observations.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Transducción de Señal / Queratinocitos / Modelos Biológicos Tipo de estudio: Risk_factors_studies Límite: Animals Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2021 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Transducción de Señal / Queratinocitos / Modelos Biológicos Tipo de estudio: Risk_factors_studies Límite: Animals Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2021 Tipo del documento: Article