Your browser doesn't support javascript.
loading
Prediction of whole-cell transcriptional response with machine learning.
Eslami, Mohammed; Borujeni, Amin Espah; Eramian, Hamed; Weston, Mark; Zheng, George; Urrutia, Joshua; Corbet, Carolyn; Becker, Diveena; Maschhoff, Paul; Clowers, Katie; Cristofaro, Alexander; Hosseini, Hamid Doost; Gordon, D Benjamin; Dorfan, Yuval; Singer, Jedediah; Vaughn, Matthew; Gaffney, Niall; Fonner, John; Stubbs, Joe; Voigt, Christopher A; Yeung, Enoch.
Afiliación
  • Eslami M; Data Science, Netrias, LLC, Annapolis, MD 21409, USA.
  • Borujeni AE; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
  • Eramian H; Data Science, Netrias, LLC, Annapolis, MD 21409, USA.
  • Weston M; Data Science, Netrias, LLC, Annapolis, MD 21409, USA.
  • Zheng G; Data Science, Netrias, LLC, Annapolis, MD 21409, USA.
  • Urrutia J; Life Sciences and Computing, Texas Advanced Computing Center, Austin, TX 78758, USA.
  • Corbet C; Ginkgo Bioworks, Inc., Boston, MA 02210, USA.
  • Becker D; Ginkgo Bioworks, Inc., Boston, MA 02210, USA.
  • Maschhoff P; Ginkgo Bioworks, Inc., Boston, MA 02210, USA.
  • Clowers K; Ginkgo Bioworks, Inc., Boston, MA 02210, USA.
  • Cristofaro A; TScan Therapeutics, Inc., Waltham, MA 02451, USA.
  • Hosseini HD; Foundry for Synthetic Biology, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
  • Gordon DB; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
  • Dorfan Y; Foundry for Synthetic Biology, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
  • Singer J; Foundry for Synthetic Biology, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
  • Vaughn M; Two Six Technologies, Arlington, VA 22203, USA.
  • Gaffney N; Life Sciences and Computing, Texas Advanced Computing Center, Austin, TX 78758, USA.
  • Fonner J; Life Sciences and Computing, Texas Advanced Computing Center, Austin, TX 78758, USA.
  • Stubbs J; Life Sciences and Computing, Texas Advanced Computing Center, Austin, TX 78758, USA.
  • Voigt CA; Life Sciences and Computing, Texas Advanced Computing Center, Austin, TX 78758, USA.
  • Yeung E; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Bioinformatics ; 38(2): 404-409, 2022 01 03.
Article en En | MEDLINE | ID: mdl-34570169
MOTIVATION: Applications in synthetic and systems biology can benefit from measuring whole-cell response to biochemical perturbations. Execution of experiments to cover all possible combinations of perturbations is infeasible. In this paper, we present the host response model (HRM), a machine learning approach that maps response of single perturbations to transcriptional response of the combination of perturbations. RESULTS: The HRM combines high-throughput sequencing with machine learning to infer links between experimental context, prior knowledge of cell regulatory networks, and RNASeq data to predict a gene's dysregulation. We find that the HRM can predict the directionality of dysregulation to a combination of inducers with an accuracy of >90% using data from single inducers. We further find that the use of prior, known cell regulatory networks doubles the predictive performance of the HRM (an R2 from 0.3 to 0.65). The model was validated in two organisms, Escherichia coli and Bacillus subtilis, using new experiments conducted after training. Finally, while the HRM is trained with gene expression data, the direct prediction of differential expression makes it possible to also conduct enrichment analyses using its predictions. We show that the HRM can accurately classify >95% of the pathway regulations. The HRM reduces the number of RNASeq experiments needed as responses can be tested in silico prior to the experiment. AVAILABILITY AND IMPLEMENTATION: The HRM software and tutorial are available at https://github.com/sd2e/CDM and the configurable differential expression analysis tools and tutorials are available at https://github.com/SD2E/omics_tools. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Programas Informáticos / Aprendizaje Automático Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Bioinformatics Asunto de la revista: INFORMATICA MEDICA Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Programas Informáticos / Aprendizaje Automático Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Bioinformatics Asunto de la revista: INFORMATICA MEDICA Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos