Your browser doesn't support javascript.
loading
Intestinal Microbiota, Anti-Inflammatory, and Anti-Oxidative Status of Broiler Chickens Fed Diets Containing Mushroom Waste Compost By-Products.
Chuang, Wen Yang; Lin, Li Jen; Shih, Hsin Der; Shy, Yih Min; Chang, Shang Chang; Lee, Tzu Tai.
Afiliación
  • Chuang WY; Department of Animal Science, National Chung Hsing University, Taichung 404, Taiwan.
  • Lin LJ; School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan.
  • Shih H; Taiwan Agricultural Research Institute, Council of Agriculture, Executive Yuan, Taichung 413, Taiwan.
  • Shy YM; Hsinchu Branch, Livestock Research Institute, Council of Agriculture, Miaoli 368, Taiwan.
  • Chang SC; Kaohsiung Animal Propagation Station, Livestock Research Institute, Council of Agriculture, Pingtung 912, Taiwan.
  • Lee TT; Department of Animal Science, National Chung Hsing University, Taichung 404, Taiwan.
Animals (Basel) ; 11(9)2021 Aug 30.
Article en En | MEDLINE | ID: mdl-34573516
ABSTRACT
This study investigated the effects of using mushroom waste compost as the residue medium for Pleurotus eryngii planting, which was used as a feed replacement; its consequent influence on broiler chickens' intestinal microbiota, anti-inflammatory responses, and anti-oxidative status was likewise studied. A total of 240 male broilers were used and allocated to four treatment groups the basal diet-control group (corn-soybean); 5% replacement of a soybean meal via PWMC (Pennisetum purpureum Schum No. 2 waste mushroom compost); 5% replacement of a soybean meal via FPW (Saccharomyces cerevisiae fermented PWMC); 5% replacement of a soybean meal via PP (Pennisetum purpureum Schum No. 2). Each treatment had three replicates and 20 birds per pen. The levels of glutathione peroxidase and superoxide dismutase mRNA as well as protein increased in the liver and serum in chickens, respectively; mRNA levels of inflammation-related genes were also suppressed 2 to 10 times in all treatments as compared to those in the control group. The tight junction and mucin were enhanced 2 to 10 times in all treatment groups as compared to those in the control, especially in the PWMC group. Nevertheless, the appetite-related mRNA levels were increased in the PWMC and FPW groups by at least two times. In ileum and cecum, the Firmicutes/Bacteroidetes ratios in broilers were decreased in the PWMC, FPW, and PP groups. The Lactobacillaceae in the ileum were increased mainly in the PWMC and control groups. Overall, high-fiber feeds (PWMC, FPW, and PP) could enhance the broilers' health by improving their antioxidant capacities and decreasing their inflammatory response as compared to the control. Based on the results, a 5% replacement of the soybean meal via PWMC is recommended in the broiler chickens' diet.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Animals (Basel) Año: 2021 Tipo del documento: Article País de afiliación: Taiwán

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Animals (Basel) Año: 2021 Tipo del documento: Article País de afiliación: Taiwán