Your browser doesn't support javascript.
loading
Metformin and Dichloroacetate Suppress Proliferation of Liver Cancer Cells by Inhibiting mTOR Complex 1.
Kim, Tae Suk; Lee, Minjong; Park, Minji; Kim, Sae Yun; Shim, Min Suk; Lee, Chea Yeon; Choi, Dae Hee; Cho, Yuri.
Afiliación
  • Kim TS; Department of Internal Medicine, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon 24341, Korea.
  • Lee M; Department of Internal Medicine, Ewha Womans University College of Medicine, Seoul 07804, Korea.
  • Park M; Department of Internal Medicine, Ewha Womans University Medical Center, Seoul 07804, Korea.
  • Kim SY; Department of Internal Medicine, Ewha Womans University College of Medicine, Seoul 07804, Korea.
  • Shim MS; Department of Internal Medicine, Ewha Womans University Medical Center, Seoul 07804, Korea.
  • Lee CY; Department of Internal Medicine, CHA Gangnam Medical Center, CHA University School of Medicine, Seoul 06135, Korea.
  • Choi DH; Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.
  • Cho Y; Division of Bioengineering, Incheon National University, Incheon 22012, Korea.
Int J Mol Sci ; 22(18)2021 Sep 17.
Article en En | MEDLINE | ID: mdl-34576192
ABSTRACT
The Warburg effect is important for cancer cell proliferation. This phenomenon can be flexible by interaction between glycolysis and mitochondrial oxidation for energy production. We aimed to investigate the anticancer effects of the pyruvate dehydrogenase kinase inhibitor, dichloroacetate (DCA) and the mitochondrial respiratory complex I inhibitor metformin in liver cancer cells. The anticancer effect of DCA and/or metformin on HepG2, PLC/PRF5 human liver cancer cell lines, MH-134 murine hepatoma cell lines, and primary normal hepatocytes using MTT assay. Inhibition of lactate/ATP production and intracellular reactive oxygen species generation by DCA and metformin was investigated. Inhibition of PI3K/Akt/mTOR complex I was evaluated to see whether it occurred through AMPK signaling. Anticancer effects of a combination treatment of DCA and metformin were evaluated in HCC murine model. The results showed that metformin and DCA effectively induced apoptosis in liver cancer cells. A combination treatment of metformin and DCA did not affect viability of primary normal hepatocytes. Metformin upregulated glycolysis in liver cancer cells, thereby increasing sensitivity to the DCA treatment. Metformin and DCA inhibited mTOR complex I signaling through upregulated AMPK-independent REDD1. In addition, metformin and DCA increased reactive oxygen species levels in liver cancer cells, which induced apoptosis. A combination treatment of metformin and DCA significantly suppressed the tumor growth of liver cancer cells using in vivo xenograft model. Taken together, the combined treatment of metformin and DCA suppressed the growth of liver cancer cells. This strategy may be effective for patients with advanced liver cancer.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Carcinoma Hepatocelular / Ácido Dicloroacético / Serina-Treonina Quinasas TOR / Neoplasias Hepáticas / Metformina Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Int J Mol Sci Año: 2021 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Carcinoma Hepatocelular / Ácido Dicloroacético / Serina-Treonina Quinasas TOR / Neoplasias Hepáticas / Metformina Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Int J Mol Sci Año: 2021 Tipo del documento: Article