Your browser doesn't support javascript.
loading
Stress response to oxytetracycline and microplastic-polyethylene in wheat (Triticum aestivum L.) during seed germination and seedling growth stages.
Bao, Yanyu; Pan, Chengrong; Li, Dezheng; Guo, Aiyun; Dai, Fengbin.
Afiliación
  • Bao Y; Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China. Electronic address: baoyanyu@nankai.edu.
  • Pan C; Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China.
  • Li D; Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China.
  • Guo A; Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China.
  • Dai F; The Fine Varieties Breeding Center of Zoucheng, Jining 273518, Shandong Province, PR China.
Sci Total Environ ; 806(Pt 2): 150553, 2022 Feb 01.
Article en En | MEDLINE | ID: mdl-34600215
ABSTRACT
Much efforts have been devoted to clarify the phytotoxicity of individual contaminants in plants, such as individual antibiotic and microplastic; however, little is known about the phytotoxicity of their combined exposure. Here, we investigated the effects of individual and combined exposure of wheat (Triticum aestivum L.) (Xiaoyan 22) to oxytetracycline (OTC) and polyethylene (PE) microplastics using physiological and metabolic profilings. During the seed germination stage, OTC induced phytotoxicity, as observed through the changes of root elongation, sprout length, fresh weight and the vitality index, with significant effect at the 50 and 150 mg·L-1 levels; the effect of PE microplastics depended on the OTC level in the combined exposure groups. During seedling cultivation, catalase (CAT) and ascorbate peroxidase (APX), as antioxidant enzyme indices, were sensitive to OTC exposure stress, although OTC was not determined in leaves. Untargeted metabolomics of wheat leaves revealed OTC concentration-, metabolite class- and PE-dependent metabolic responses. Dominant metabolites included carboxylic acids, alcohols, and amines in the control group and all treatment groups. Compared to only OTC treatment, PE reprogrammed carboxylic acid and alcohol profiles in combined exposure groups with obvious separation in PLS-DA. Combined exposure induced fewer metabolites than OTC exposure alone at the 5 and 50 mg·L-1 levels. The shared metabolite numbers were higher in the OTC groups than in the PE-OTC groups. Pathway enrichment analysis showed a drift in metabolic pathways between individual and combined exposure to OTC and PE, which included glyoxylate and dicarboxylate metabolism, amino acid metabolism and isoquinoline alkaloid biosynthesis. Among metabolites, aromatic acids and amino acids were more sensitive to combined exposure than individual exposure. These results contribute to clarifying the underlying mechanisms of phytotoxicity of individual and combined exposure to OTC and PE.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Oxitetraciclina / Plantones Idioma: En Revista: Sci Total Environ Año: 2022 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Oxitetraciclina / Plantones Idioma: En Revista: Sci Total Environ Año: 2022 Tipo del documento: Article