Your browser doesn't support javascript.
loading
Functional drug susceptibility testing using single-cell mass predicts treatment outcome in patient-derived cancer neurosphere models.
Stockslager, Max A; Malinowski, Seth; Touat, Mehdi; Yoon, Jennifer C; Geduldig, Jack; Mirza, Mahnoor; Kim, Annette S; Wen, Patrick Y; Chow, Kin-Hoe; Ligon, Keith L; Manalis, Scott R.
Afiliación
  • Stockslager MA; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Koch Institute for Integrative Cancer Research, Cambridge, MA, USA.
  • Malinowski S; Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
  • Touat M; Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Broad Institute of Harvard and MIT, Cambridge, MA, USA; Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, AP-HP, Hôpitaux Universitaires La Pitié
  • Yoon JC; Koch Institute for Integrative Cancer Research, Cambridge, MA, USA.
  • Geduldig J; Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
  • Mirza M; Koch Institute for Integrative Cancer Research, Cambridge, MA, USA.
  • Kim AS; Department of Pathology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA.
  • Wen PY; Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA USA.
  • Chow KH; Center for Patient-Derived Models, Dana-Farber Cancer Institute, Boston, MA, USA.
  • Ligon KL; Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Broad Institute of Harvard and MIT, Cambridge, MA, USA; Department of Pathology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA; Center for Patient-Derived Models, Dana-
  • Manalis SR; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Koch Institute for Integrative Cancer Research, Cambridge, MA, USA; Broad Institute of Harvard and MIT, Cambridge, MA, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Ca
Cell Rep ; 37(1): 109788, 2021 10 05.
Article en En | MEDLINE | ID: mdl-34610309
Functional precision medicine aims to match individual cancer patients to optimal treatment through ex vivo drug susceptibility testing on patient-derived cells. However, few functional diagnostic assays have been validated against patient outcomes at scale because of limitations of such assays. Here, we describe a high-throughput assay that detects subtle changes in the mass of individual drug-treated cancer cells as a surrogate biomarker for patient treatment response. To validate this approach, we determined ex vivo response to temozolomide in a retrospective cohort of 69 glioblastoma patient-derived neurosphere models with matched patient survival and genomics. Temozolomide-induced changes in cell mass distributions predict patient overall survival similarly to O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation and may aid in predictions in gliomas with mismatch-repair variants of unknown significance, where MGMT is not predictive. Our findings suggest cell mass is a promising functional biomarker for cancers and drugs that lack genomic biomarkers.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Neoplasias Encefálicas / Glioblastoma / Antineoplásicos Alquilantes / Tamaño de la Célula / Análisis de la Célula Individual Tipo de estudio: Observational_studies / Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Cell Rep Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Neoplasias Encefálicas / Glioblastoma / Antineoplásicos Alquilantes / Tamaño de la Célula / Análisis de la Célula Individual Tipo de estudio: Observational_studies / Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Cell Rep Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos