Your browser doesn't support javascript.
loading
NEXTorch: A Design and Bayesian Optimization Toolkit for Chemical Sciences and Engineering.
Wang, Yifan; Chen, Tai-Ying; Vlachos, Dionisios G.
Afiliación
  • Wang Y; Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St., Newark, Delaware 19716, United States.
  • Chen TY; Catalysis Center for Energy Innovation, RAPID Manufacturing Institute, and Delaware Energy Institute (DEI), University of Delaware, 221 Academy St., Newark, Delaware 19716, United States.
  • Vlachos DG; Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St., Newark, Delaware 19716, United States.
J Chem Inf Model ; 61(11): 5312-5319, 2021 11 22.
Article en En | MEDLINE | ID: mdl-34694805
Automation and optimization of chemical systems require well-informed decisions on what experiments to run to reduce time, materials, and/or computations. Data-driven active learning algorithms have emerged as valuable tools to solve such tasks. Bayesian optimization, a sequential global optimization approach, is a popular active-learning framework. Past studies have demonstrated its efficiency in solving chemistry and engineering problems. We introduce NEXTorch, a library in Python/PyTorch, to facilitate laboratory or computational design using Bayesian optimization. NEXTorch offers fast predictive modeling, flexible optimization loops, visualization capabilities, easy interfacing with legacy software, and multiple types of parameters and data type conversions. It provides GPU acceleration, parallelization, and state-of-the-art Bayesian optimization algorithms and supports both automated and human-in-the-loop optimization. The comprehensive online documentation introduces Bayesian optimization theory and several examples from catalyst synthesis, reaction condition optimization, parameter estimation, and reactor geometry optimization. NEXTorch is open-source and available on GitHub.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Algoritmos / Programas Informáticos Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: J Chem Inf Model Asunto de la revista: INFORMATICA MEDICA / QUIMICA Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Algoritmos / Programas Informáticos Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: J Chem Inf Model Asunto de la revista: INFORMATICA MEDICA / QUIMICA Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos