Knowledge-based approaches to drug discovery for rare diseases.
Drug Discov Today
; 27(2): 490-502, 2022 02.
Article
en En
| MEDLINE
| ID: mdl-34718207
The conventional drug discovery pipeline has proven to be unsustainable for rare diseases. Herein, we discuss recent advances in biomedical knowledge mining applied to discovering therapeutics for rare diseases. We summarize current chemogenomics data of relevance to rare diseases and provide a perspective on the effectiveness of machine learning (ML) and biomedical knowledge graph mining in rare disease drug discovery. We illustrate the power of these methodologies using a chordoma case study. We expect that a broader application of knowledge graph mining and artificial intelligence (AI) approaches will expedite the discovery of viable drug candidates against both rare and common diseases.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Inteligencia Artificial
/
Enfermedades Raras
Límite:
Humans
Idioma:
En
Revista:
Drug Discov Today
Asunto de la revista:
FARMACOLOGIA
/
TERAPIA POR MEDICAMENTOS
Año:
2022
Tipo del documento:
Article