Your browser doesn't support javascript.
loading
Prediction of corneal back surface power - Deep learning algorithm versus multivariate regression.
Langenbucher, Achim; Szentmáry, Nóra; Cayless, Alan; Weisensee, Johannes; Wendelstein, Jascha; Hoffmann, Peter.
Afiliación
  • Langenbucher A; Department of Experimental Ophthalmology, Saarland University, Homburg/Saar, Germany.
  • Szentmáry N; Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Saarland University, Homburg/Saar, Germany.
  • Cayless A; Department of Ophthalmology, Semmelweis-University, Budapest, Hungary.
  • Weisensee J; School of Physical Sciences, The Open University, Milton Keynes, UK.
  • Wendelstein J; Department of Experimental Ophthalmology, Saarland University, Homburg/Saar, Germany.
  • Hoffmann P; Department of Ophthalmology, Johannes Kepler University, Linz, Austria.
Ophthalmic Physiol Opt ; 42(1): 185-194, 2022 01.
Article en En | MEDLINE | ID: mdl-34726283
BACKGROUND: The corneal back surface is known to add some against the rule astigmatism, with implications in cataract surgery with toric lens implantation. This study aimed to set up and validate a deep learning algorithm to predict corneal back surface power from the corneal front surface power and biometric measures. METHODS: This study was based on a large dataset of IOLMaster 700 measurements from two clinical centres. N = 19,553 measurements of 19,553 eyes with valid corneal front (CFSPM) and back surface power (CBSPM) data and other biometric measures. After a vector decomposition of CFSPM and CBSPM into equivalent power and projections of astigmatism to the 0°/90° and 45°/135° axes, a multi-output feedforward neural network was derived to predict vector components of CBSPM from CFSPM and other measurements. The predictions were compared with a multivariate linear regression model based on CFSPM components only. RESULTS: After pre-conditioning, a network with two hidden layers each having 12 neurons was derived. The dataset was split into training (70%), validation (15%) and test (15%) subsets. The prediction error (predicted corneal back surface power CBSPP - CBSPM) of the network after training and crossvalidation showed no systematic offset, narrower distributions for CBSPP - CBSPM and no trend error of CBSPP - CBSPM vs. CBSPM for any of the vector components. The multivariate linear model also showed no systematic offset, but broader distributions of the prediction error components and a systematic trend of all vector components vs. CFSPM components. CONCLUSION: The neural network approach based on CFSPM vector components and other biometric measures outperforms the multivariate linear model in predicting corneal back surface power vector components. Modern biometers can supply all parameters required for this algorithm, enabling reliable predictions for corneal back surface data where direct corneal back surface data are unavailable.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Astigmatismo / Facoemulsificación / Aprendizaje Profundo / Lentes Intraoculares Tipo de estudio: Diagnostic_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Ophthalmic Physiol Opt Año: 2022 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Astigmatismo / Facoemulsificación / Aprendizaje Profundo / Lentes Intraoculares Tipo de estudio: Diagnostic_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Ophthalmic Physiol Opt Año: 2022 Tipo del documento: Article País de afiliación: Alemania