Your browser doesn't support javascript.
loading
EEG-based detection of emotional valence towards a reproducible measurement of emotions.
Apicella, Andrea; Arpaia, Pasquale; Mastrati, Giovanna; Moccaldi, Nicola.
Afiliación
  • Apicella A; Laboratory of Augmented Reality for Health Monitoring (ARHeMLab), Department of Electrical Engineering and Information Technology, University of Naples Federico II, Naples, Italy.
  • Arpaia P; Laboratory of Augmented Reality for Health Monitoring (ARHeMLab), Department of Electrical Engineering and Information Technology, University of Naples Federico II, Naples, Italy. pasquale.arpaia@unina.it.
  • Mastrati G; Interdepartmental Center for Research on Management and Innovation in Healthcare (CIRMIS), University of Naples Federico II, Naples, Italy. pasquale.arpaia@unina.it.
  • Moccaldi N; Laboratory of Augmented Reality for Health Monitoring (ARHeMLab), Department of Electrical Engineering and Information Technology, University of Naples Federico II, Naples, Italy.
Sci Rep ; 11(1): 21615, 2021 11 03.
Article en En | MEDLINE | ID: mdl-34732756
A methodological contribution to a reproducible Measurement of Emotions for an EEG-based system is proposed. Emotional Valence detection is the suggested use case. Valence detection occurs along the interval scale theorized by the Circumplex Model of emotions. The binary choice, positive valence vs negative valence, represents a first step towards the adoption of a metric scale with a finer resolution. EEG signals were acquired through a 8-channel dry electrode cap. An implicit-more controlled EEG paradigm was employed to elicit emotional valence through the passive view of standardized visual stimuli (i.e., Oasis dataset) in 25 volunteers without depressive disorders. Results from the Self Assessment Manikin questionnaire confirmed the compatibility of the experimental sample with that of Oasis. Two different strategies for feature extraction were compared: (i) based on a-priory knowledge (i.e., Hemispheric Asymmetry Theories), and (ii) automated (i.e., a pipeline of a custom 12-band Filter Bank and Common Spatial Pattern). An average within-subject accuracy of 96.1 %, was obtained by a shallow Artificial Neural Network, while k-Nearest Neighbors allowed to obtain a cross-subject accuracy equal to 80.2%.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Algoritmos / Procesamiento de Señales Asistido por Computador / Redes Neurales de la Computación / Electroencefalografía / Emociones / Modelos Psicológicos Tipo de estudio: Diagnostic_studies / Prognostic_studies Límite: Adult / Female / Humans / Male Idioma: En Revista: Sci Rep Año: 2021 Tipo del documento: Article País de afiliación: Italia

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Algoritmos / Procesamiento de Señales Asistido por Computador / Redes Neurales de la Computación / Electroencefalografía / Emociones / Modelos Psicológicos Tipo de estudio: Diagnostic_studies / Prognostic_studies Límite: Adult / Female / Humans / Male Idioma: En Revista: Sci Rep Año: 2021 Tipo del documento: Article País de afiliación: Italia