Your browser doesn't support javascript.
loading
Highly Efficient Piezoelectrets through Ultra-Soft Elastomeric Spacers.
von Seggern, Heinz; Zhukov, Sergey; Dali, Omar Ben; Hartmann, Claas; Sessler, Gerhard M; Kupnik, Mario.
Afiliación
  • von Seggern H; Department of Materials and Earth Sciences, Technical University of Darmstadt, Merckstr. 25, 64283 Darmstadt, Germany.
  • Zhukov S; Department of Materials and Earth Sciences, Technical University of Darmstadt, Merckstr. 25, 64283 Darmstadt, Germany.
  • Dali OB; Department of Electrical Engineering and Information Technology, Technical University of Darmstadt, Merckstr. 25, 64283 Darmstadt, Germany.
  • Hartmann C; Department of Electrical Engineering and Information Technology, Technical University of Darmstadt, Merckstr. 25, 64283 Darmstadt, Germany.
  • Sessler GM; Department of Electrical Engineering and Information Technology, Technical University of Darmstadt, Merckstr. 25, 64283 Darmstadt, Germany.
  • Kupnik M; Department of Electrical Engineering and Information Technology, Technical University of Darmstadt, Merckstr. 25, 64283 Darmstadt, Germany.
Polymers (Basel) ; 13(21)2021 Oct 29.
Article en En | MEDLINE | ID: mdl-34771310
ABSTRACT
Piezoelectrets are artificial ferroelectrics that are produced from non-polar air-filled porous polymers by symmetry breaking through high-voltage-induced Paschen breakdown in air. A new strategy for three-layer polymer sandwiches is introduced by separating the electrical from the mechanical response. A 3D-printed grid of periodically spaced thermoplastic polyurethane (TPU) spacers and air channels was sandwiched between two thin fluoroethylene propylene (FEP) films. After corona charging, the air-filled sections acted as electroactive elements, while the ultra-soft TPU sections determined the mechanical stiffness. Due to the ultra-soft TPU sections, very high quasi-static (22,000 pC N-1) and dynamic (7500 pC N-1) d33 coefficients were achieved. The isothermal stability of the d33 coefficients showed a strong dependence on poling temperature. Furthermore, the thermally stimulated discharge currents revealed well-known instability of positive charge carriers in FEP, thereby offering the possibility of stabilization by high-temperature poling. The dependences of the dynamic d33 coefficient on seismic mass and acceleration showed high coefficients, even at accelerations approaching that of gravity. An advanced analytical model rationalizes the magnitude of the obtained quasi-static d33 coefficients of the suggested structure indicating a potential for further optimization.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Polymers (Basel) Año: 2021 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Polymers (Basel) Año: 2021 Tipo del documento: Article País de afiliación: Alemania