Your browser doesn't support javascript.
loading
Super-learner model realizes the transient prediction of CO2 and NOx of diesel trucks: Model development, evaluation and interpretation.
Wei, Ning; Zhang, Qijun; Zhang, Yanjie; Jin, Jiaxin; Chang, Junyu; Yang, Zhiwen; Ma, Chao; Jia, Zhenyu; Ren, Chunzhe; Wu, Lin; Peng, Jianfei; Mao, Hongjun.
Afiliación
  • Wei N; Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
  • Zhang Q; Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China. Electronic address: zh
  • Zhang Y; Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
  • Jin J; Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
  • Chang J; Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
  • Yang Z; Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
  • Ma C; Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
  • Jia Z; Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
  • Ren C; Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
  • Wu L; Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
  • Peng J; Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
  • Mao H; Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China. Electronic address: ho
Environ Int ; 158: 106977, 2022 01.
Article en En | MEDLINE | ID: mdl-34775187
The transient simulation of CO2 and NOX from motor vehicles has essential applications in evaluating vehicular greenhouse gas emissions and pollutant emissions. However, accurately estimating vehicular transient emissions is challenging due to the heterogeneity between different vehicles and the continuous upgrading of vehicle exhaust purification technology. To accurately characterize the transient emissions of motor vehicles, a Super-learner model is used to build CO2 and NOx transient emission models. The actual onboard test data of 9 China VI N2 vehicles were used to train the model, and the test data of another China VI N2 vehicle were selected for further robustness verification. There were significant differences in the emissions between the vehicles, but the constructed transient model could capture the common law of transient emissions from China VI N2 vehicles. The R2 values of CO2 and NOx emission in the test data of the validation vehicle were 0.71 and 0.82, respectively. In addition, to further prove the model's robustness, the training data were synchronously modelled based on the Moves-method. The Super-learner model has a smaller RMSE on the validation set than the model based on the Moves-method, indicating that the Super-learner model has more transient simulation advantages. The marginal contributions of the model characteristics to the model results were analysed by SHapley Additive exPlanation (SHAP) value interpretation, and the marginal contributions of different pollutant characteristic parameters varied. Therefore, when establishing transient models of different pollutants, the selection of the model parameters demands considering the generation and purification process of different pollutants. The present work provides novel insights into the parameter selection, construction, and interpretation of the transient vehicle emission model.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Contaminantes Atmosféricos Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Environ Int Año: 2022 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Contaminantes Atmosféricos Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Environ Int Año: 2022 Tipo del documento: Article País de afiliación: China