Your browser doesn't support javascript.
loading
Modelling the active SARS-CoV-2 helicase complex as a basis for structure-based inhibitor design.
Berta, Dénes; Badaoui, Magd; Martino, Sam Alexander; Buigues, Pedro J; Pisliakov, Andrei V; Elghobashi-Meinhardt, Nadia; Wells, Geoff; Harris, Sarah A; Frezza, Elisa; Rosta, Edina.
Afiliación
  • Berta D; Department of Physics and Astronomy, University College London London WC1E 6BT UK e.rosta@ucl.ac.uk.
  • Badaoui M; Department of Chemistry, King's College London London SE1 1DB UK.
  • Martino SA; Department of Physics and Astronomy, University College London London WC1E 6BT UK e.rosta@ucl.ac.uk.
  • Buigues PJ; Department of Chemistry, King's College London London SE1 1DB UK.
  • Pisliakov AV; Department of Physics and Astronomy, University College London London WC1E 6BT UK e.rosta@ucl.ac.uk.
  • Elghobashi-Meinhardt N; Department of Chemistry, King's College London London SE1 1DB UK.
  • Wells G; Department of Physics and Astronomy, University College London London WC1E 6BT UK e.rosta@ucl.ac.uk.
  • Harris SA; Department of Chemistry, King's College London London SE1 1DB UK.
  • Frezza E; Computational Biology, School of Science and Engineering, School of Life Sciences, University of Dundee Dow Street Dundee DD1 5EH UK a.pisliakov@dundee.ac.uk.
  • Rosta E; Department of Chemistry, Technische Universität Berlin 10623 Berlin Germany n.elghobashi-meinhardt@campus.tu-berlin.de.
Chem Sci ; 12(40): 13492-13505, 2021 Oct 20.
Article en En | MEDLINE | ID: mdl-34777769
ABSTRACT
The RNA helicase (non-structural protein 13, NSP13) of SARS-CoV-2 is essential for viral replication, and it is highly conserved among the coronaviridae family, thus a prominent drug target to treat COVID-19. We present here structural models and dynamics of the helicase in complex with its native substrates based on thorough analysis of homologous sequences and existing experimental structures. We performed and analysed microseconds of molecular dynamics (MD) simulations, and our model provides valuable insights to the binding of the ATP and ssRNA at the atomic level. We identify the principal motions characterising the enzyme and highlight the effect of the natural substrates on this dynamics. Furthermore, allosteric binding sites are suggested by our pocket analysis. Our obtained structural and dynamical insights are important for subsequent studies of the catalytic function and for the development of specific inhibitors at our characterised binding pockets for this promising COVID-19 drug target.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Chem Sci Año: 2021 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Chem Sci Año: 2021 Tipo del documento: Article