Your browser doesn't support javascript.
loading
Survival analysis with semi-supervised predictive clustering trees.
Roy, Bijit; Stepisnik, Tomaz; Vens, Celine; Dzeroski, Saso.
Afiliación
  • Roy B; L-BioStat, KU Leuven, Leuven, Belgium.
  • Stepisnik T; Jozef Stefan Institute, Jamova 39, Ljubljana, Slovenia; Jozef Stefan International Postgraduate School, Ljubljana, Slovenia.
  • Vens C; KU Leuven, Dept. of Public Health and Primary Care, Kortrijk, Belgium; ITEC, IMEC Research Group at KU Leuven, Kortrijk, Belgium.
  • Dzeroski S; Jozef Stefan Institute, Jamova 39, Ljubljana, Slovenia; Jozef Stefan International Postgraduate School, Ljubljana, Slovenia. Electronic address: saso.dzeroski@ijs.si.
Comput Biol Med ; 141: 105001, 2022 02.
Article en En | MEDLINE | ID: mdl-34782112
Many clinical studies follow patients over time and record the time until the occurrence of an event of interest (e.g., recovery, death, …). When patients drop out of the study or when their event did not happen before the study ended, the collected dataset is said to contain censored observations. Given the rise of personalized medicine, clinicians are often interested in accurate risk prediction models that predict, for unseen patients, a survival profile, including the expected time until the event. Survival analysis methods are used to detect associations or compare subpopulations of patients in this context. In this article, we propose to cast the time-to-event prediction task as a multi-target regression task, with censored observations modeled as partially labeled examples. We then apply semi-supervised learning to the resulting data representation. More specifically, we use semi-supervised predictive clustering trees and ensembles thereof. Empirical results over eleven real-life datasets demonstrate superior or equivalent predictive performance of the proposed approach as compared to three competitor methods. Moreover, smaller models are obtained compared to random survival forests, another tree ensemble method. Finally, we illustrate the informative feature selection mechanism of our method, by interpreting the splits induced by a single tree model when predicting survival for amyotrophic lateral sclerosis patients.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Aprendizaje Automático Supervisado Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Comput Biol Med Año: 2022 Tipo del documento: Article País de afiliación: Bélgica

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Aprendizaje Automático Supervisado Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Comput Biol Med Año: 2022 Tipo del documento: Article País de afiliación: Bélgica