Your browser doesn't support javascript.
loading
Polymeric Scaffolds for Dental, Oral, and Craniofacial Regenerative Medicine.
Wu, David T; Munguia-Lopez, Jose G; Cho, Ye Won; Ma, Xiaolu; Song, Vivian; Zhu, Zhiyue; Tran, Simon D.
Afiliación
  • Wu DT; Craniofacial Stem Cells and Tissue Engineering Laboratory, Faculty of Dentistry, McGill University, Montreal, QC H3A 0C7, Canada.
  • Munguia-Lopez JG; Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Harvard University, Boston, MA 02115, USA.
  • Cho YW; Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.
  • Ma X; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.
  • Song V; Craniofacial Stem Cells and Tissue Engineering Laboratory, Faculty of Dentistry, McGill University, Montreal, QC H3A 0C7, Canada.
  • Zhu Z; Department of Bioengineering, Faculty of Engineering, McGill University, Montreal, QC H3A 0E9, Canada.
  • Tran SD; Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Harvard University, Boston, MA 02115, USA.
Molecules ; 26(22)2021 Nov 22.
Article en En | MEDLINE | ID: mdl-34834134
ABSTRACT
Dental, oral, and craniofacial (DOC) regenerative medicine aims to repair or regenerate DOC tissues including teeth, dental pulp, periodontal tissues, salivary gland, temporomandibular joint (TMJ), hard (bone, cartilage), and soft (muscle, nerve, skin) tissues of the craniofacial complex. Polymeric materials have a broad range of applications in biomedical engineering and regenerative medicine functioning as tissue engineering scaffolds, carriers for cell-based therapies, and biomedical devices for delivery of drugs and biologics. The focus of this review is to discuss the properties and clinical indications of polymeric scaffold materials and extracellular matrix technologies for DOC regenerative medicine. More specifically, this review outlines the key properties, advantages and drawbacks of natural polymers including alginate, cellulose, chitosan, silk, collagen, gelatin, fibrin, laminin, decellularized extracellular matrix, and hyaluronic acid, as well as synthetic polymers including polylactic acid (PLA), polyglycolic acid (PGA), polycaprolactone (PCL), poly (ethylene glycol) (PEG), and Zwitterionic polymers. This review highlights key clinical applications of polymeric scaffolding materials to repair and/or regenerate various DOC tissues. Particularly, polymeric materials used in clinical procedures are discussed including alveolar ridge preservation, vertical and horizontal ridge augmentation, maxillary sinus augmentation, TMJ reconstruction, periodontal regeneration, periodontal/peri-implant plastic surgery, regenerative endodontics. In addition, polymeric scaffolds application in whole tooth and salivary gland regeneration are discussed.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Materiales Biocompatibles / Medicina Regenerativa / Andamios del Tejido Límite: Humans Idioma: En Revista: Molecules Asunto de la revista: BIOLOGIA Año: 2021 Tipo del documento: Article País de afiliación: Canadá

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Materiales Biocompatibles / Medicina Regenerativa / Andamios del Tejido Límite: Humans Idioma: En Revista: Molecules Asunto de la revista: BIOLOGIA Año: 2021 Tipo del documento: Article País de afiliación: Canadá