Your browser doesn't support javascript.
loading
On-demand pulling-off of magnetic nanoparticles from biomaterial surfaces through implant-associated infectious biofilms for enhanced antibiotic efficacy.
Quan, Kecheng; Zhang, Zexin; Ren, Yijin; Busscher, Henk J; van der Mei, Henny C; Peterson, Brandon W.
Afiliación
  • Quan K; College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China; University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands.
  • Zhang Z; College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China. Electronic address: zhangzx@suda.edu.cn.
  • Ren Y; University of Groningen and University Medical Center Groningen, Department of Orthodontics, Hanzeplein 1, 9713 GZ Groningen, the Netherlands.
  • Busscher HJ; University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands. Electronic address: h.j.busscher@umcg.nl.
  • van der Mei HC; University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands. Electronic address: h.c.van.der.mei@umcg.nl.
  • Peterson BW; University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands.
Mater Sci Eng C Mater Biol Appl ; 131: 112526, 2021 Dec.
Article en En | MEDLINE | ID: mdl-34857305
ABSTRACT
Biomaterial-associated infections can occur any time after surgical implantation of biomaterial implants and limit their success rates. On-demand, antimicrobial release coatings have been designed, but in vivo release triggers uniquely relating with infection do not exist, while inadvertent leakage of antimicrobials can cause exhaustion of a coating prior to need. Here, we attach magnetic-nanoparticles to a biomaterial surface, that can be pulled-off in a magnetic field through an adhering, infectious biofilm. Magnetic-nanoparticles remained stably attached to a surface upon exposure to PBS for at least 50 days, did not promote bacterial adhesion or negatively affect interaction with adhering tissue cells. Nanoparticles could be magnetically pulled-off from a surface through an adhering biofilm, creating artificial water channels in the biofilm. At a magnetic-nanoparticle coating concentration of 0.64 mg cm-2, these by-pass channels increased the penetrability of Staphylococcus aureus and Pseudomonas aeruginosa biofilms towards different antibiotics, yielding 10-fold more antibiotic killing of biofilm inhabitants than in absence of artificial channels. This innovative use of magnetic-nanoparticles for the eradication of biomaterial-associated infections requires no precise targeting of magnetic-nanoparticles and allows more effective use of existing antibiotics by breaking the penetration barrier of an infectious biofilm adhering to a biomaterial implant surface on-demand.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Nanopartículas de Magnetita / Antibacterianos Tipo de estudio: Risk_factors_studies Idioma: En Revista: Mater Sci Eng C Mater Biol Appl Año: 2021 Tipo del documento: Article País de afiliación: Países Bajos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Nanopartículas de Magnetita / Antibacterianos Tipo de estudio: Risk_factors_studies Idioma: En Revista: Mater Sci Eng C Mater Biol Appl Año: 2021 Tipo del documento: Article País de afiliación: Países Bajos