Your browser doesn't support javascript.
loading
Predicting genome organisation and function with mechanistic modelling.
Chiang, Michael; Brackley, Chris A; Marenduzzo, Davide; Gilbert, Nick.
Afiliación
  • Chiang M; SUPA, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK.
  • Brackley CA; SUPA, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK.
  • Marenduzzo D; SUPA, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK.
  • Gilbert N; MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh, EH4 2XU, UK. Electronic address: nick.gilbert@ed.ac.uk.
Trends Genet ; 38(4): 364-378, 2022 04.
Article en En | MEDLINE | ID: mdl-34857425
Fitting-free mechanistic models based on polymer simulations predict chromatin folding in 3D by focussing on the underlying biophysical mechanisms. This class of models has been increasingly used in conjunction with experiments to study the spatial organisation of eukaryotic chromosomes. Feedback from experiments to models leads to successive model refinement and has previously led to the discovery of new principles for genome organisation. Here, we review the basis of mechanistic polymer simulations, explain some of the more recent approaches and the contexts in which they have been useful to explain chromosome biology, and speculate on how they might be used in the future.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Cromatina / Cromosomas Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Trends Genet Asunto de la revista: GENETICA Año: 2022 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Cromatina / Cromosomas Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Trends Genet Asunto de la revista: GENETICA Año: 2022 Tipo del documento: Article