Your browser doesn't support javascript.
loading
Find and cut-and-transfer (FiCAT) mammalian genome engineering.
Pallarès-Masmitjà, Maria; Ivancic, Dimitrije; Mir-Pedrol, Júlia; Jaraba-Wallace, Jessica; Tagliani, Tommaso; Oliva, Baldomero; Rahmeh, Amal; Sánchez-Mejías, Avencia; Güell, Marc.
Afiliación
  • Pallarès-Masmitjà M; Department of Health and Experimental Sciences, Pompeu Fabra University, Barcelona, Spain.
  • Ivancic D; Department of Health and Experimental Sciences, Pompeu Fabra University, Barcelona, Spain.
  • Mir-Pedrol J; Barcelona Institute of Science and Technology, Barcelona, Spain.
  • Jaraba-Wallace J; Department of Health and Experimental Sciences, Pompeu Fabra University, Barcelona, Spain.
  • Tagliani T; Department of Health and Experimental Sciences, Pompeu Fabra University, Barcelona, Spain.
  • Oliva B; Department of Health and Experimental Sciences, Pompeu Fabra University, Barcelona, Spain.
  • Rahmeh A; Department of Health and Experimental Sciences, Pompeu Fabra University, Barcelona, Spain.
  • Sánchez-Mejías A; Department of Health and Experimental Sciences, Pompeu Fabra University, Barcelona, Spain.
  • Güell M; Department of Health and Experimental Sciences, Pompeu Fabra University, Barcelona, Spain. avencia.sanchez-mejias@upf.edu.
Nat Commun ; 12(1): 7071, 2021 12 03.
Article en En | MEDLINE | ID: mdl-34862378
ABSTRACT
While multiple technologies for small allele genome editing exist, robust technologies for targeted integration of large DNA fragments in mammalian genomes are still missing. Here we develop a gene delivery tool (FiCAT) combining the precision of a CRISPR-Cas9 (find module), and the payload transfer efficiency of an engineered piggyBac transposase (cut-and-transfer module). FiCAT combines the functionality of Cas9 DNA scanning and targeting DNA, with piggyBac donor DNA processing and transfer capacity. PiggyBac functional domains are engineered providing increased on-target integration while reducing off-target events. We demonstrate efficient delivery and programmable insertion of small and large payloads in cellulo (human (Hek293T, K-562) and mouse (C2C12)) and in vivo in mouse liver. Finally, we evolve more efficient versions of FiCAT by generating a targeted diversity of 394,000 variants and undergoing 4 rounds of evolution. In this work, we develop a precise and efficient targeted insertion of multi kilobase DNA fragments in mammalian genomes.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Elementos Transponibles de ADN / Transposasas / Edición Génica Límite: Animals / Female / Humans / Male Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2021 Tipo del documento: Article País de afiliación: España

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Elementos Transponibles de ADN / Transposasas / Edición Génica Límite: Animals / Female / Humans / Male Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2021 Tipo del documento: Article País de afiliación: España