Your browser doesn't support javascript.
loading
Efficient decontamination of ciprofloxacin at neutral pH via visible light assisted Fenton-like process mediated by Fe(III)-GLDA complexation.
He, Fangru; Ren, Hejun; Li, Tingting; Liu, Shuai; Zhou, Rui.
Afiliación
  • He F; Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, Jilin Provincial Key Laboratory of Water Resource and Environment, College of New Energy and Environment, Jilin University, 2519 Jiefang Road, Changchun, 130021, P. R. China.
  • Ren H; Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, Jilin Provincial Key Laboratory of Water Resource and Environment, College of New Energy and Environment, Jilin University, 2519 Jiefang Road, Changchun, 130021, P. R. China. Electronic address: renhejun@jlu.edu.cn
  • Li T; Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, Jilin Provincial Key Laboratory of Water Resource and Environment, College of New Energy and Environment, Jilin University, 2519 Jiefang Road, Changchun, 130021, P. R. China.
  • Liu S; Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, Jilin Provincial Key Laboratory of Water Resource and Environment, College of New Energy and Environment, Jilin University, 2519 Jiefang Road, Changchun, 130021, P. R. China.
  • Zhou R; Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, Jilin Provincial Key Laboratory of Water Resource and Environment, College of New Energy and Environment, Jilin University, 2519 Jiefang Road, Changchun, 130021, P. R. China. Electronic address: zhour@jlu.edu.cn.
Chemosphere ; 289: 133199, 2022 Feb.
Article en En | MEDLINE | ID: mdl-34883122
This work demonstrated a novel N,N-bis(carboxymethyl)glutamic acid (GLDA) modified visible (vis) light assisted Fenton-like system which could effectively removal ciprofloxacin (CIP) at neutral pH. The removal rate of CIP in the GLDA/Fe(III)/H2O2/vis system was 97.9% within 120 min and was approximately twice as high as that in the Fe(III)/H2O2/vis system. GLDA could significantly accelerate the Fe(III)/Fe(II) cycle under visible light irradiation. Radical scavenging experiments demonstrated that 74.2% of the Fe(II) in the GLDA/Fe(III)/H2O2/vis system originated from the ligand-to-metal charge transfer reaction between Fe(III) and GLDA. The hydroxyl radical was the dominant species for CIP degradation. H2O2 utilization kinetic modeling exhibited that 90.1% of H2O2 was used for CIP mineralization. The effects of experimental parameters and coexisting substances on the removal of CIP in the Fe(III)/GLDA/H2O2/vis system were investigated in detail. The intermediate products of CIP were explored via the high-performance liquid chromatography-mass spectrometry.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Compuestos Férricos / Ciprofloxacina Idioma: En Revista: Chemosphere Año: 2022 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Compuestos Férricos / Ciprofloxacina Idioma: En Revista: Chemosphere Año: 2022 Tipo del documento: Article