Your browser doesn't support javascript.
loading
Nanocarbon Framework-Supported Ultrafine Mo2C@MoOx Nanoclusters for Photothermal-Enhanced Tumor-Specific Tandem Catalysis Therapy.
Wang, Li; Zhuang, Liang; He, Shan; Tian, Fangzhen; Yang, Xueting; Guan, Shanyue; Waterhouse, Geoffrey I N; Zhou, Shuyun.
Afiliación
  • Wang L; Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China.
  • Zhuang L; University of Chinese Academy of Sciences, Beijing 100190, P.R. China.
  • He S; School of Light Industry, Beijing Technology and Business University, 11 Fucheng Road, Haidian District, Beijing 100048, P.R. China.
  • Tian F; School of Light Industry, Beijing Technology and Business University, 11 Fucheng Road, Haidian District, Beijing 100048, P.R. China.
  • Yang X; Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China.
  • Guan S; University of Chinese Academy of Sciences, Beijing 100190, P.R. China.
  • Waterhouse GIN; State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029 Beijing, P.R. China.
  • Zhou S; Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China.
ACS Appl Mater Interfaces ; 13(50): 59649-59661, 2021 Dec 22.
Article en En | MEDLINE | ID: mdl-34894645
Recent advances in the synthesis of multifunctional nanomaterials create new opportunities for the rational design of multimodal chemodynamic therapy (CDT) agents. Precisely tailoring the nanostructure and composition of CDT nanoagents for maximum efficacy remains a challenge. Herein, we report the successful synthesis of nanocarbon framework-supported ultrafine Mo2C@MoOx nanoclusters (C/Mo2C@MoOx) via a pyrolysis of a Mo/ZIF-8 MOF precursor at 900 °C followed by mild surface oxidation. The developed C/Mo2C@MoOx composite demonstrated outstanding performance in photothermal-enhanced tumor-specific tandem catalysis therapy. Specifically, C/Mo2C@MoOx efficiently catalyzed the conversion of endogenous H2O2 to cytotoxic 1O2 via a Russell mechanism, while also converting the O2 byproduct to cytotoxic ·O2- via an oxidase-like mechanism. A high dispersion of active Mo5+ sites in the exposed MoOx shell enhanced the reactive oxygen species (ROS)-generating efficiency of C/Mo2C@MoOx. Moreover, the Mo2C core in the ultrafine Mo2C@MoOx nanoclusters allowed NIR-II (1064 nm)-driven photothermal heating, which significantly boosted the CDT process through photothermal effects. Additionally, the CDT process relied on a redox cycle involving Mo5+/Mo6+ species, which could be sustained by glutathione (GSH) consumption. Given these advantages, C/Mo2C@MoOx demonstrated remarkable synergistic therapeutic efficacy for cancer treatment (both in vitro and in vivo) through tumor microenvironment-stimulated generation of multiple ROS and NIR-II photothermal activity.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Materiales Biocompatibles / Terapia Fototérmica / Peróxido de Hidrógeno Límite: Humans Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2021 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Materiales Biocompatibles / Terapia Fototérmica / Peróxido de Hidrógeno Límite: Humans Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2021 Tipo del documento: Article