Your browser doesn't support javascript.
loading
Autophagy inducers lead to transient accumulation of autophagosomes in Arabidopsis roots.
Kim, Jeong Hun; Jung, Hyera; Choi, Ye Eun; Chung, Taijoon.
Afiliación
  • Kim JH; Department of Biological Sciences, Pusan National University, 63 Beon-gil 2, Busandaehag-ro, Geumjeong-gu, Busan, 46241, Republic of Korea.
  • Jung H; Department of Biological Sciences, Pusan National University, 63 Beon-gil 2, Busandaehag-ro, Geumjeong-gu, Busan, 46241, Republic of Korea.
  • Choi YE; Department of Biological Sciences, Pusan National University, 63 Beon-gil 2, Busandaehag-ro, Geumjeong-gu, Busan, 46241, Republic of Korea.
  • Chung T; Department of Biological Sciences, Pusan National University, 63 Beon-gil 2, Busandaehag-ro, Geumjeong-gu, Busan, 46241, Republic of Korea. taijoon@pusan.ac.kr.
Plant Cell Rep ; 41(2): 463-471, 2022 Feb.
Article en En | MEDLINE | ID: mdl-34977975
ABSTRACT
KEY MESSAGE This study reveals that plant roots show a rapid termination of autophagy induction, offering a plant model for studying how excessive autophagy is deterred. In eukaryotes, autophagy is an intracellular mechanism that is important for recycling nutrients by degrading various macromolecules and organelles in vacuoles and lysosomes. Autophagy is induced when the nutrient supply to plant cells is limited. The protein kinase target of rapamycin (TOR) complex negatively regulates autophagy when nutrients are present in adequate amounts. The TOR inhibitor AZD8055 is an autophagy inducer that is useful for studying starvation-induced autophagy in plant cells. The mechanism by which AZD8055 increases the autophagic flux in plant cells has not been studied in detail. Here, we show that AZD8055-induced autophagy requires phosphatidylinositol 3-kinase activity and canonical AUTOPHAGY-RELATED (ATG) genes in Arabidopsis thaliana. Autophagic flux rapidly increased in seedlings treated with AZD8055. Unexpectedly, autophagy induction was transient in root cells and terminated earlier than in cotyledon cells. Transient induction is partly caused by a temporary effect of AZD8055 on phagophore initiation. These findings indicate a TOR-independent mechanism for terminating autophagy induction, thereby paving the way for elucidating how excess autophagy is prevented in plant roots.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Arabidopsis / Raíces de Plantas / Autofagosomas Tipo de estudio: Prognostic_studies Idioma: En Revista: Plant Cell Rep Asunto de la revista: BOTANICA Año: 2022 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Arabidopsis / Raíces de Plantas / Autofagosomas Tipo de estudio: Prognostic_studies Idioma: En Revista: Plant Cell Rep Asunto de la revista: BOTANICA Año: 2022 Tipo del documento: Article