Your browser doesn't support javascript.
loading
Specific Silencing of Microglial Gene Expression in the Rat Brain by Nanoparticle-Based Small Interfering RNA Delivery.
Guo, Shanshan; Cázarez-Márquez, Fernando; Jiao, Han; Foppen, Ewout; Korpel, Nikita L; Grootemaat, Anita E; Liv, Nalan; Gao, Yuanqing; van der Wel, Nicole; Zhou, Bing; Nie, Guangjun; Yi, Chun-Xia.
Afiliación
  • Guo S; Department of Endocrinology and Metabolism, Laboratory of Endocrinology, Amsterdam Gastroenterology Endocrinology Metabolism Research Institute, Amsterdam University Medical Centre (UMC), location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
  • Cázarez-Márquez F; Department of Endocrinology and Metabolism, Laboratory of Endocrinology, Amsterdam Gastroenterology Endocrinology Metabolism Research Institute, Amsterdam University Medical Centre (UMC), location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
  • Jiao H; Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, 1105 AZ Amsterdam, The Netherlands.
  • Foppen E; Department of Endocrinology and Metabolism, Laboratory of Endocrinology, Amsterdam Gastroenterology Endocrinology Metabolism Research Institute, Amsterdam University Medical Centre (UMC), location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
  • Korpel NL; Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China.
  • Grootemaat AE; Department of Endocrinology and Metabolism, Laboratory of Endocrinology, Amsterdam Gastroenterology Endocrinology Metabolism Research Institute, Amsterdam University Medical Centre (UMC), location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
  • Liv N; Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, 1105 AZ Amsterdam, The Netherlands.
  • Gao Y; Department of Endocrinology and Metabolism, Laboratory of Endocrinology, Amsterdam Gastroenterology Endocrinology Metabolism Research Institute, Amsterdam University Medical Centre (UMC), location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
  • van der Wel N; Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, 1105 AZ Amsterdam, The Netherlands.
  • Zhou B; Cellular Imaging Core Facility, Amsterdam University Medical Centre (UMC), location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
  • Nie G; Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands.
  • Yi CX; Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China.
ACS Appl Mater Interfaces ; 14(4): 5066-5079, 2022 Feb 02.
Article en En | MEDLINE | ID: mdl-35041392
ABSTRACT
Microglia are the major innate immune cells in the brain and are essential for maintaining homeostasis in a neuronal microenvironment. Currently, a genetic tool to modify microglial gene expression in specific brain regions is not available. In this report, we introduce a tailor-designed method that uses lipid and polymer hybridized nanoparticles (LPNPs) for the local delivery of small interfering RNAs (siRNAs), allowing the silencing of specific microglial genes in the hypothalamus. Our physical characterization proved that this LPNP-siRNA was uniform and stable. We demonstrated that, due to their natural phagocytic behavior, microglial cells are the dominant cell type taking up these LPNPs in the hypothalamus of rats. We then tested the silencing efficiency of LPNPs carrying a cluster of differentiation molecule 11b (CD11b) or Toll-like receptor 4 (TLR4) siRNA using different in vivo and in vitro approaches. In cultured microglial cells treated with LPNP-CD11b siRNA or LPNP-TLR4 siRNA, we found a silencing efficiency at protein expression levels of 65 or 77%, respectively. In line with this finding, immunohistochemistry and western blotting results from in vivo experiments showed that LPNP-CD11b siRNA significantly inhibited microglial CD11b protein expression in the hypothalamus. Furthermore, following lipopolysaccharide (LPS) stimulation of cultured microglial cells, gene expression of the TLR4 downstream signaling component myeloid differentiation factor 88 and its associated cytokines was significantly inhibited in LPNP-TLR4 siRNA-treated microglial cells compared with cells treated with LPNP-scrambled siRNA. Finally, after LPNP-TLR4 siRNA injection into the rat hypothalamus, we observed a significant reduction in microglial activation in response to LPS compared with the control rats injected with LPNP-scrambled siRNA. Our results indicate that LPNP-siRNA is a promising tool to manipulate microglial activity locally in the brain and may serve as a prophylactic approach to prevent microglial dysfunction-associated diseases.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Portadores de Fármacos / Expresión Génica / Microglía / ARN Interferente Pequeño / Nanopartículas / Hipotálamo Límite: Animals Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2022 Tipo del documento: Article País de afiliación: Países Bajos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Portadores de Fármacos / Expresión Génica / Microglía / ARN Interferente Pequeño / Nanopartículas / Hipotálamo Límite: Animals Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2022 Tipo del documento: Article País de afiliación: Países Bajos