Your browser doesn't support javascript.
loading
From Strain Stiffening to Softening-Rheological Characterization of Keratins 8 and 18 Networks Crosslinked via Electron Irradiation.
Elbalasy, Iman; Wilharm, Nils; Herchenhahn, Erik; Konieczny, Robert; Mayr, Stefan G; Schnauß, Jörg.
Afiliación
  • Elbalasy I; Peter-Debye Institute for Soft Matter Physics, Leipzig University, Linnéstraße 5, 04103 Leipzig, Germany.
  • Wilharm N; Faculty of Science, Cairo University, Giza 12613, Egypt.
  • Herchenhahn E; Leibniz-Institut für Oberflächenmodifizierung e.V. (IOM), Permoserstr. 15, 04318 Leipzig, Germany.
  • Konieczny R; Division of Surface Physics, Department of Physics and Earth Sciences, Leipzig University, Linnéstraße 5, 04103 Leipzig, Germany.
  • Mayr SG; Peter-Debye Institute for Soft Matter Physics, Leipzig University, Linnéstraße 5, 04103 Leipzig, Germany.
  • Schnauß J; Leibniz-Institut für Oberflächenmodifizierung e.V. (IOM), Permoserstr. 15, 04318 Leipzig, Germany.
Polymers (Basel) ; 14(3)2022 Feb 04.
Article en En | MEDLINE | ID: mdl-35160604
ABSTRACT
Networks of crosslinked keratin filaments are abundant in epithelial cells and tissues, providing resilience against mechanical forces and ensuring cellular integrity. Although studies of in vitro models of reconstituted keratin networks have revealed important mechanical aspects, the mechanical properties of crosslinked keratin structures remain poorly understood. Here, we exploited the power of electron beam irradiation (EBI) to crosslink in vitro networks of soft epithelial keratins 8 and 18 (k8-k18) filaments with different irradiation doses (30 kGy, 50 kGy, 80 kGy, 100 kGy, and 150 kGy). We combined bulk shear rheology with confocal microscopy to investigate the impact of crosslinking on the mechanical and structural properties of the resultant keratin gels. We found that irradiated keratin gels display higher linear elastic modulus than the unirradiated, entangled networks at all doses tested. However, at the high doses (80 kGy, 100 kGy, and 150 kGy), we observed a remarkable drop in the elastic modulus compared to 50 kGy. Intriguingly, the irradiation drastically changed the behavior for large, nonlinear deformations. While untreated keratin networks displayed a strong strain stiffening, increasing irradiation doses shifted the system to a strain softening behavior. In agreement with the rheological behavior in the linear regime, the confocal microscopy images revealed fully isotropic networks with high percolation in 30 kGy and 50 kGy-treated keratin samples, while irradiation with 100 kGy induced the formation of thick bundles and clusters. Our results demonstrate the impact of permanent crosslinking on k8-k18 mechanics and provide new insights into the potential contribution of intracellular covalent crosslinking to the loss of mechanical resilience in some human keratin diseases. These insights will also provide inspiration for the synthesis of new keratin-based biomaterials.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Polymers (Basel) Año: 2022 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Polymers (Basel) Año: 2022 Tipo del documento: Article País de afiliación: Alemania