Wood-Inspired Compressible Superhydrophilic Sponge for Efficient Removal of Micron-Sized Water Droplets from Viscous Oils.
ACS Appl Mater Interfaces
; 14(9): 11789-11802, 2022 Mar 09.
Article
en En
| MEDLINE
| ID: mdl-35195410
Efficient micron-sized droplet separation materials have become a new demand for environmental protection and economic development. However, existing separation methods are difficult to be effectively used for micron-sized water droplets surrounded by viscous oil, and common materials have difficulty maintaining hydrophilicity underoil. Here, inspired by the microstructure of tree xylem, we report a cellulose-polyurethane sponge (CP-Sponge) with wood-like pores and underoil superhydrophilicity using directional freeze-casting. The CP-Sponge has an excellent selective water absorption capacity underoil and compression resilience. This preparation strategy can flexibly control the sponge's dimensional morphology. The designed cylindrical CP-Sponge can be easily installed in the silicone tube of a peristaltic pump. During pump operation, with a simple absorption, compression, and recovery process, the CP-Sponge continuously and effectively removes micron-sized water from crude oil and lubricating oil, reducing residual water in the oil to less than 2 ppm. The absorption-saturated sponge can be dried to continue recycling. Eco-friendly, recyclable, and sustainable artificial porous sponges provide new ideas and inspiration for the practical application of deep dehydration of viscous oils.
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Idioma:
En
Revista:
ACS Appl Mater Interfaces
Asunto de la revista:
BIOTECNOLOGIA
/
ENGENHARIA BIOMEDICA
Año:
2022
Tipo del documento:
Article