Precision Medicine for BRCA/PALB2-Mutated Pancreatic Cancer and Emerging Strategies to Improve Therapeutic Responses to PARP Inhibition.
Cancers (Basel)
; 14(4)2022 Feb 11.
Article
en En
| MEDLINE
| ID: mdl-35205643
Pancreatic cancer is projected to become the second leading cause of cancer-related death by 2030. As patients typically present with advanced disease and show poor responses to broad-spectrum chemotherapy, overall survival remains a dismal 10%. This underscores an urgent clinical need to identify new therapeutic approaches for PDAC patients. Precision medicine is now the standard of care for several difficult-to-treat cancer histologies. Such approaches involve the identification of a clinically actionable molecular feature, which is matched to an appropriate targeted therapy. Selective poly (ADP-ribose) polymerase (PARP) inhibitors such as Niraparib, Olaparib, Talazoparib, Rucaparib, and Veliparib are now approved for several cancers with loss of high-fidelity double-strand break homologous recombination (HR), namely those with deleterious mutations to BRCA1/2, PALB2, and other functionally related genes. Recent evidence suggests that the presence of such mutations in pancreatic ductal adenocarcinoma (PDAC), the most common and lethal pancreatic cancer histotype, significantly alters drug responses both with respect to first-line chemotherapy and maintenance therapy. In this review, we discuss the current treatment paradigm for PDAC tumors with confirmed deficits in double-strand break HR, as well as emerging strategies to both improve responses to PARP inhibition in HR-deficient PDAC and confer sensitivity to tumors proficient in HR repair.
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Idioma:
En
Revista:
Cancers (Basel)
Año:
2022
Tipo del documento:
Article
País de afiliación:
Estados Unidos