Your browser doesn't support javascript.
loading
Robot Localization in Tunnels: Combining Discrete Features in a Pose Graph Framework.
Seco, Teresa; Lázaro, María T; Espelosín, Jesús; Montano, Luis; Villarroel, José L.
Afiliación
  • Seco T; Instituto Tecnológico de Aragón, 50018 Zaragoza, Spain.
  • Lázaro MT; Instituto Tecnológico de Aragón, 50018 Zaragoza, Spain.
  • Espelosín J; Instituto Tecnológico de Aragón, 50018 Zaragoza, Spain.
  • Montano L; Aragón Institute for Engineering Research (I3A), University of Zaragoza, 50009 Zaragoza, Spain.
  • Villarroel JL; Aragón Institute for Engineering Research (I3A), University of Zaragoza, 50009 Zaragoza, Spain.
Sensors (Basel) ; 22(4)2022 Feb 11.
Article en En | MEDLINE | ID: mdl-35214292
Robot localization inside tunnels is a challenging task due to the special conditions of these environments. The GPS-denied nature of these scenarios, coupled with the low visibility, slippery and irregular surfaces, and lack of distinguishable visual and structural features, make traditional robotics methods based on cameras, lasers, or wheel encoders unreliable. Fortunately, tunnels provide other types of valuable information that can be used for localization purposes. On the one hand, radio frequency signal propagation in these types of scenarios shows a predictable periodic structure (periodic fadings) under certain settings, and on the other hand, tunnels present structural characteristics (e.g., galleries, emergency shelters) that must comply with safety regulations. The solution presented in this paper consists of detecting both types of features to be introduced as discrete sources of information in an alternative graph-based localization approach. The results obtained from experiments conducted in a real tunnel demonstrate the validity and suitability of the proposed system for inspection applications.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Robótica Tipo de estudio: Prognostic_studies Idioma: En Revista: Sensors (Basel) Año: 2022 Tipo del documento: Article País de afiliación: España

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Robótica Tipo de estudio: Prognostic_studies Idioma: En Revista: Sensors (Basel) Año: 2022 Tipo del documento: Article País de afiliación: España