Your browser doesn't support javascript.
loading
A new insight into a thermoplastic microfluidic device aimed at improvement of oxygenation process and avoidance of shear stress during cell culture.
Sheidaei, Zohreh; Akbarzadeh, Pooria; Nguyen, Nam-Trung; Kashaninejad, Navid.
Afiliación
  • Sheidaei Z; Faculty of Mechanical and Mechatronics Engineering, Shahrood University of Technology, Shahroud, Iran.
  • Akbarzadeh P; Laboratory of Life Sciences Electronics, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland.
  • Nguyen NT; Faculty of Mechanical and Mechatronics Engineering, Shahrood University of Technology, Shahroud, Iran. akbarzad@ut.ac.ir.
  • Kashaninejad N; Queensland Micro- and Nanotechnology Centre, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane, QLD, 4111, Australia.
Biomed Microdevices ; 24(2): 15, 2022 03 11.
Article en En | MEDLINE | ID: mdl-35277762
ABSTRACT
Keeping the oxygen concentration at the desired physiological limits is a challenging task in cellular microfluidic devices. A good knowledge of affecting parameters would be helpful to control the oxygen delivery to cells. This study aims to provide a fundamental understanding of oxygenation process within a hydrogel-based microfluidic device considering simultaneous mass transfer, medium flow, and cellular consumption. For this purpose, the role of geometrical and hydrodynamic properties was numerically investigated. The results are in good agreement with both numerical and experimental data in the literature. The obtained results reveal that increasing the microchannel height delays the oxygen depletion in the absence of media flow. We also observed that increasing the medium flow rate increases the oxygen concentration in the device; however, it leads to high maximum shear stress. A novel pulsatile medium flow injection pattern is introduced to reduce detrimental effect of the applied shear stress on the cells.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Técnicas Analíticas Microfluídicas / Dispositivos Laboratorio en un Chip Idioma: En Revista: Biomed Microdevices Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2022 Tipo del documento: Article País de afiliación: Irán

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Técnicas Analíticas Microfluídicas / Dispositivos Laboratorio en un Chip Idioma: En Revista: Biomed Microdevices Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2022 Tipo del documento: Article País de afiliación: Irán