Your browser doesn't support javascript.
loading
Structural, metabolic, and functional characteristics of soil microbial communities in response to benzo[a]pyrene stress.
Yi, Meiling; Zhang, Lilan; Li, Yang; Qian, Yao.
Afiliación
  • Yi M; State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
  • Zhang L; State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing 400045, China. Electronic address: lilanzhang@cqu.edu.cn.
  • Li Y; School of Environment, Beijing Normal University, Beijing 100875, China.
  • Qian Y; State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
J Hazard Mater ; 431: 128632, 2022 06 05.
Article en En | MEDLINE | ID: mdl-35278957
Understanding the characteristics of soil microbes responding to benzo[a]pyrene (BaP) helps to deepen the knowledge of the risks of BaP to soil ecosystem. In this study, the structural, metabolic, and functional responses of soil microbial communities to BaP (8.11 mg kg-1) were investigated. Analysis of microbial community structure based on 16 S rRNA and ITS gene sequencing indicated that BaP addition enriched microbes associated with aromatic compound degradation (Sphingomonas, Bacilli, Fusarium) and oligotrophs (Blastocatellaceae, Rokubacteriales), but inhibited Cyanobacteria involved in nitrogen-fixing process. Network analysis showed that the bacterial community enhanced intraspecific cooperation, while fungal community mainly altered the keystone taxa under BaP stress. Biolog EcoPlate assay demonstrated that microbial metabolism of carbon sources, especially nitrogen-containing sources, was stimulated by BaP addition. Functional analysis based on enzyme activity tests, functional gene quantification, and function annotation showed that nitrogen-cycling processes, especially nitrogen fixation, were significantly inhibited. These results suggest that BaP-tolerant microbes may establish cooperative relationships and compete for resources and ecological niches with sensitive microbes, especially those associated with nitrogen cycling, ultimately leading to enhanced carbon source utilization and restricted nitrogen cycling. This study clearly elucidates the adaptation strategies and functional shifts of soil microbial communities to BaP contamination.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Suelo / Microbiota Idioma: En Revista: J Hazard Mater Asunto de la revista: SAUDE AMBIENTAL Año: 2022 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Suelo / Microbiota Idioma: En Revista: J Hazard Mater Asunto de la revista: SAUDE AMBIENTAL Año: 2022 Tipo del documento: Article País de afiliación: China