Your browser doesn't support javascript.
loading
Underlying mechanism of accelerated cell death and multiple disease resistance in a maize lethal leaf spot 1 allele.
Li, Jiankun; Chen, Mengyao; Fan, Tianyuan; Mu, Xiaohuan; Gao, Jie; Wang, Ying; Jing, Teng; Shi, Cuilan; Niu, Hongbin; Zhen, Sihan; Fu, Junjie; Zheng, Jun; Wang, Guoying; Tang, Jihua; Gou, Mingyue.
Afiliación
  • Li J; State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.
  • Chen M; State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.
  • Fan T; State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.
  • Mu X; State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.
  • Gao J; State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.
  • Wang Y; State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.
  • Jing T; State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.
  • Shi C; State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.
  • Niu H; State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.
  • Zhen S; Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
  • Fu J; Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
  • Zheng J; Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
  • Wang G; Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
  • Tang J; State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.
  • Gou M; The Shennong Laboratory, Zhengzhou, Henan 450002, China.
J Exp Bot ; 73(12): 3991-4007, 2022 06 24.
Article en En | MEDLINE | ID: mdl-35303096
ABSTRACT
Multiple disease resistance (MDR) in maize has attracted increasing attention. However, the interplay between cell death and metabolite changes and their contributions to MDR remains elusive in maize. In this study, we identified a mutant named as lesion mimic 30 (les30) that showed 'suicidal' lesion formation in the absence of disease and had enhanced resistance to the fungal pathogen Curvularia lunata. Using map-based cloning, we identified the causal gene encoding pheophorbide a oxidase (PAO), which is known to be involved in chlorophyll degradation and MDR, and is encoded by LETHAL LEAF SPOT1 (LLS1). LLS1 was found to be induced by both biotic and abiotic stresses. Transcriptomics analysis showed that genes involved in defense responses and secondary metabolite biosynthesis were mildly activated in leaves of the les30 mutant without lesions, whilst they were strongly activated in leaves with lesions. In addition, in les30 leaves with lesions, there was overaccumulation of defense-associated phytohormones including jasmonic acid and salicylic acid, and of phytoalexins including phenylpropanoids, lignin, and flavonoids, suggesting that their biosynthesis was activated in a lesion-dependent manner. Taken together, our study implies the existence of an interactive amplification loop of interrupted chlorophyll degradation, cell death, expression of defense-related genes, and metabolite changes that results in suicidal lesion formation and MDR, and this has the potential to be exploited by genetic manipulation to improve maize disease resistance.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Zea mays / Resistencia a la Enfermedad Límite: Humans Idioma: En Revista: J Exp Bot Asunto de la revista: BOTANICA Año: 2022 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Zea mays / Resistencia a la Enfermedad Límite: Humans Idioma: En Revista: J Exp Bot Asunto de la revista: BOTANICA Año: 2022 Tipo del documento: Article País de afiliación: China