The synaptic scaffold protein MPP2 interacts with GABAA receptors at the periphery of the postsynaptic density of glutamatergic synapses.
PLoS Biol
; 20(3): e3001503, 2022 03.
Article
en En
| MEDLINE
| ID: mdl-35312684
Recent advances in imaging technology have highlighted that scaffold proteins and receptors are arranged in subsynaptic nanodomains. The synaptic membrane-associated guanylate kinase (MAGUK) scaffold protein membrane protein palmitoylated 2 (MPP2) is a component of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-associated protein complexes and also binds to the synaptic cell adhesion molecule SynCAM 1. Using superresolution imaging, we show that-like SynCAM 1-MPP2 is situated at the periphery of the postsynaptic density (PSD). In order to explore MPP2-associated protein complexes, we used a quantitative comparative proteomics approach and identified multiple γ-aminobutyric acid (GABA)A receptor subunits among novel synaptic MPP2 interactors. In line with a scaffold function for MPP2 in the assembly and/or modulation of intact GABAA receptors, manipulating MPP2 expression had effects on inhibitory synaptic transmission. We further show that GABAA receptors are found together with MPP2 in a subset of dendritic spines and thus highlight MPP2 as a scaffold that serves as an adaptor molecule, linking peripheral synaptic elements critical for inhibitory regulation to central structures at the PSD of glutamatergic synapses.
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Densidad Postsináptica
/
Proteínas de la Membrana
Idioma:
En
Revista:
PLoS Biol
Asunto de la revista:
BIOLOGIA
Año:
2022
Tipo del documento:
Article
País de afiliación:
Alemania