Your browser doesn't support javascript.
loading
Transcriptomic and Physiological Responses of Chlorella pyrenoidosa during Exposure to 17α-Ethinylestradiol.
Zhang, Yurui; Chen, Zixu; Tao, Yue; Wu, Wanyin; Zeng, Yuyang; Liao, Kejun; Li, Xinyue; Chen, Lanzhou.
Afiliación
  • Zhang Y; Hubei Research Center of Environment Remediation Technology, Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, School of Resource & Environmental Sciences, Wuhan University, Wuhan 430079, China.
  • Chen Z; Hubei Research Center of Environment Remediation Technology, Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, School of Resource & Environmental Sciences, Wuhan University, Wuhan 430079, China.
  • Tao Y; Hubei Research Center of Environment Remediation Technology, Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, School of Resource & Environmental Sciences, Wuhan University, Wuhan 430079, China.
  • Wu W; Hubei Research Center of Environment Remediation Technology, Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, School of Resource & Environmental Sciences, Wuhan University, Wuhan 430079, China.
  • Zeng Y; Hubei Research Center of Environment Remediation Technology, Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, School of Resource & Environmental Sciences, Wuhan University, Wuhan 430079, China.
  • Liao K; Hubei Research Center of Environment Remediation Technology, Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, School of Resource & Environmental Sciences, Wuhan University, Wuhan 430079, China.
  • Li X; Hubei Research Center of Environment Remediation Technology, Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, School of Resource & Environmental Sciences, Wuhan University, Wuhan 430079, China.
  • Chen L; Hubei Research Center of Environment Remediation Technology, Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, School of Resource & Environmental Sciences, Wuhan University, Wuhan 430079, China.
Int J Mol Sci ; 23(7)2022 Mar 25.
Article en En | MEDLINE | ID: mdl-35408944
ABSTRACT
17α-ethinylestradiol (17α-EE2) is frequently detected in water bodies due to its use being widespread in the treatment of prostate and breast cancer and in the control of alopecia, posing a threat to humans and aquatic organisms. However, studies on its toxicity to Chlorella pyrenoidosa have been limited to date. This study investigated the effects of 17α-EE2 on the growth, photosynthetic activity, and antioxidant system of C. pyrenoidosa and revealed related molecular changes using transcriptomic analysis. The cell density of algae was inhibited in the presence of 17α-EE2, and cell morphology was also altered. Photosynthetics were damaged, while reactive oxygen species (ROS), superoxide dismutase (SOD), and malondialdehyde (MDA) content increased. Further transcriptomic analysis revealed that the pathways of photosynthesis and DNA replication were affected at three concentrations of 17α-EE2, but several specific pathways exhibited various behaviors at different concentrations. Significant changes in differentially expressed genes and their enrichment pathways showed that the low-concentration group was predominantly impaired in photosynthesis, while the higher-concentration groups were biased towards oxidative and DNA damage. This study provides a better understanding of the cellular and molecular variations of microalgae under 17α-EE2 exposure, contributing to the environmental risk assessment of such hazardous pollutants on aquatic organisms.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Contaminantes Químicos del Agua / Chlorella / Microalgas Tipo de estudio: Risk_factors_studies Límite: Humans / Male Idioma: En Revista: Int J Mol Sci Año: 2022 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Contaminantes Químicos del Agua / Chlorella / Microalgas Tipo de estudio: Risk_factors_studies Límite: Humans / Male Idioma: En Revista: Int J Mol Sci Año: 2022 Tipo del documento: Article País de afiliación: China