Engineering Relaxation-Paths of C-Exciton for Constructing Band Nesting Bypass in WS2 Monolayer.
Nano Lett
; 22(9): 3699-3706, 2022 May 11.
Article
en En
| MEDLINE
| ID: mdl-35481760
Transition-metal dichalcogenides exhibit strong photon absorption characteristics in the band nesting region (denoted as C-exciton) due to intrinsic van Hove singularities despite being atomically thin. However, because of unique parallel band structure and ineluctably unfavorable recombination process, only a small fraction of the hot carriers from C-excitons are converted into optically active band-edge excitons via inherent relaxation-paths. The resultant photoluminescence quantum yield (PLQY) is severely suppressed for the resonant excitation of C-exciton. To overcome this limitation, we have designed double type-I band alignments to construct a band nesting bypass in a monolayer WS2/CdS quantum dot heterostructure for cooling the C-excitons. Transient optical measurements confirmed that the hot carriers from the C-excitons were effectively transferred from WS2 to CdS with an efficiency of 50% and subsequently back to the WS2 band-edge to form A-excitons over an ultrafast subpicosecond time scale, accompanied by a record high PLQY of â¼11.1% for near-resonance C-exciton excitation.
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Idioma:
En
Revista:
Nano Lett
Año:
2022
Tipo del documento:
Article
País de afiliación:
China