Your browser doesn't support javascript.
loading
Performance demonstration of gas-assisted gravity drainage in a heterogeneous reservoir using a 3D scaled model.
Kong, Debin; Lian, Peiqing; Zheng, Rongchen; Li, Yiqiang.
Afiliación
  • Kong D; School of Civil and Resource Engineering, University of Science and Technology Beijing Beijing 100083 China kongdb@ustb.edu.cn.
  • Lian P; State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum Beijing 102249 China.
  • Zheng R; SINOPEC Petroleum Exploration and Production Research Institute Beijing 100083 China.
  • Li Y; SINOPEC Petroleum Exploration and Production Research Institute Beijing 100083 China.
RSC Adv ; 11(49): 30610-30622, 2021 Sep 14.
Article en En | MEDLINE | ID: mdl-35498935
Gas-assisted gravity drainage (GAGD) is an effective method for oil recovery. Gravity increases the stability of the Gas-Oil Contact (GOC), thus delaying gas breakthrough and promoting crude oil production. Studying the effects of fluid and reservoir parameters on the stability of GOC could help understand the mechanism of GAGD. In this study, a series of high-pressure GAGD tests were conducted on a 3D heterogeneous scaled model established according to the heterogeneity of the oil reservoir. During the tests, GOC was monitored with electrical resistivity tomography (ERT) to study the effects of gas injection rate, gas type, and gas injection direction on GOC and oil recovery factor (RF). The results showed that N2-GAGD achieved the most stable GOC, the largest sweep volume but a poor RF. CO2-GAGD achieved the best RF of 63.33% at the injection rate of 0.15 m d-1 under 15 MPa. CO2 and CH4 could interact with crude oil and reduce the advancing rate and transverse swept area of GOC. CO2 and CH4 could lead to a higher RF as they reduce the viscosity of crude oil, cause swelling when dissolved, and have low tension. Therefore, the effects of gas dissolution, swelling, and viscosity reduction must be considered in addition to those of gravity, viscous force, and the capillary force so that RF could be increased while ensuring the stability of the displacement front. Accordingly, a new non-dimensional number N new was proposed with comprehensive considerations of gravity, viscous force, capillary force, gas-oil viscosity ratio, the viscosity reduction by gas, and reservoir properties. Finally, a prediction model was proposed, which could accurately predict the RF of heterogeneous reservoirs applying GAGD.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: RSC Adv Año: 2021 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: RSC Adv Año: 2021 Tipo del documento: Article