Your browser doesn't support javascript.
loading
Single electrons on solid neon as a solid-state qubit platform.
Zhou, Xianjing; Koolstra, Gerwin; Zhang, Xufeng; Yang, Ge; Han, Xu; Dizdar, Brennan; Li, Xinhao; Divan, Ralu; Guo, Wei; Murch, Kater W; Schuster, David I; Jin, Dafei.
Afiliación
  • Zhou X; Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, USA.
  • Koolstra G; Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
  • Zhang X; Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, USA.
  • Yang G; The NSF AI Institute for Artificial Intelligence and Fundamental Interactions, Cambridge, USA.
  • Han X; Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA.
  • Dizdar B; Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, USA.
  • Li X; James Franck Institute and Department of Physics, University of Chicago, Chicago, IL, USA.
  • Divan R; Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, USA.
  • Guo W; Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, USA.
  • Murch KW; National High Magnetic Field Laboratory, Tallahassee, FL, USA.
  • Schuster DI; Department of Mechanical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, USA.
  • Jin D; Department of Physics, Washington University in St. Louis, St. Louis, MO, USA. murch@physics.wustl.edu.
Nature ; 605(7908): 46-50, 2022 05.
Article en En | MEDLINE | ID: mdl-35508782
ABSTRACT
Progress towards the realization of quantum computers requires persistent advances in their constituent building blocks-qubits. Novel qubit platforms that simultaneously embody long coherence, fast operation and large scalability offer compelling advantages in the construction of quantum computers and many other quantum information systems1-3. Electrons, ubiquitous elementary particles of non-zero charge, spin and mass, have commonly been perceived as paradigmatic local quantum information carriers. Despite superior controllability and configurability, their practical performance as qubits through either motional or spin states depends critically on their material environment3-5. Here we report our experimental realization of a qubit platform based on isolated single electrons trapped on an ultraclean solid neon surface in vacuum6-13. By integrating an electron trap in a circuit quantum electrodynamics architecture14-20, we achieve strong coupling between the motional states of a single electron and a single microwave photon in an on-chip superconducting resonator. Qubit gate operations and dispersive readout are implemented to measure the energy relaxation time T1 of 15 µs and phase coherence time T2 over 200 ns. These results indicate that the electron-on-solid-neon qubit already performs near the state of the art for a charge qubit21.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Nature Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Nature Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos