Your browser doesn't support javascript.
loading
Artificial intelligence for the evaluation of peripheral artery disease using arterial Doppler waveforms to predict abnormal ankle-brachial index.
McBane, Robert D; Murphree, Dennis H; Liedl, David; Lopez-Jimenez, Francisco; Attia, Itzhak Zachi; Arruda-Olson, Adelaide; Scott, Christopher G; Prodduturi, Naresh; Nowakowski, Steve E; Rooke, Thom W; Casanegra, Ana I; Wysokinski, Waldemar E; Swanson, Keith E; Houghton, Damon E; Bjarnason, Haraldur; Wennberg, Paul W.
Afiliación
  • McBane RD; Gonda Vascular Center, Mayo Clinic, Rochester, MN, USA.
  • Murphree DH; Cardiovascular Department, Mayo Clinic, Rochester, MN, USA.
  • Liedl D; Department of Artificial Intelligence and Informatics, Mayo Clinic, Rochester, MN, USA.
  • Lopez-Jimenez F; Gonda Vascular Center, Mayo Clinic, Rochester, MN, USA.
  • Attia IZ; Cardiovascular Department, Mayo Clinic, Rochester, MN, USA.
  • Arruda-Olson A; Department of Artificial Intelligence and Informatics, Mayo Clinic, Rochester, MN, USA.
  • Scott CG; Cardiovascular Department, Mayo Clinic, Rochester, MN, USA.
  • Prodduturi N; Department of Artificial Intelligence and Informatics, Mayo Clinic, Rochester, MN, USA.
  • Nowakowski SE; Cardiovascular Department, Mayo Clinic, Rochester, MN, USA.
  • Rooke TW; Clinical Trials and Biostatics, Mayo Clinic, Rochester, MN, USA.
  • Casanegra AI; Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA.
  • Wysokinski WE; Division of Engineering, Mayo Clinic, Rochester, MN, USA.
  • Swanson KE; Gonda Vascular Center, Mayo Clinic, Rochester, MN, USA.
  • Houghton DE; Cardiovascular Department, Mayo Clinic, Rochester, MN, USA.
  • Bjarnason H; Gonda Vascular Center, Mayo Clinic, Rochester, MN, USA.
  • Wennberg PW; Cardiovascular Department, Mayo Clinic, Rochester, MN, USA.
Vasc Med ; 27(4): 333-342, 2022 08.
Article en En | MEDLINE | ID: mdl-35535982
BACKGROUND: Patients with peripheral artery disease (PAD) are at increased risk for major adverse limb and cardiac events including mortality. Developing screening tools capable of accurate PAD identification is a necessary first step for strategies of adverse outcome prevention. This study aimed to determine whether machine analysis of a resting Doppler waveform using deep neural networks can accurately identify patients with PAD. METHODS: Consecutive patients (4/8/2015 - 12/31/2020) undergoing rest and postexercise ankle-brachial index (ABI) testing were included. Patients were randomly allocated to training, validation, and testing subsets (70%/15%/15%). Deep neural networks were trained on resting posterior tibial arterial Doppler waveforms to predict normal (> 0.9) or PAD (⩽ 0.9) using rest and postexercise ABI. A separate dataset of 151 patients who underwent testing during a period after the model had been created and validated (1/1/2021 - 3/31/2021) was used for secondary validation. Area under the receiver operating characteristic curves (AUC) were constructed to evaluate test performance. RESULTS: Among 11,748 total patients, 3432 patients met study criteria: 1941 with PAD (mean age 69 ± 12 years) and 1491 without PAD (64 ± 14 years). The predictive model with highest performance identified PAD with an AUC 0.94 (CI = 0.92-0.96), sensitivity 0.83, specificity 0.88, accuracy 0.85, and positive predictive value (PPV) 0.90. Results were similar for the validation dataset: AUC 0.94 (CI = 0.91-0.98), sensitivity 0.91, specificity 0.85, accuracy 0.89, and PPV 0.89 (postexercise ABI comparison). CONCLUSION: An artificial intelligence-enabled analysis of a resting Doppler arterial waveform permits identification of PAD at a clinically relevant performance level.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Índice Tobillo Braquial / Enfermedad Arterial Periférica Tipo de estudio: Clinical_trials / Prognostic_studies / Risk_factors_studies Límite: Aged / Aged80 / Humans / Middle aged Idioma: En Revista: Vasc Med Asunto de la revista: ANGIOLOGIA Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Índice Tobillo Braquial / Enfermedad Arterial Periférica Tipo de estudio: Clinical_trials / Prognostic_studies / Risk_factors_studies Límite: Aged / Aged80 / Humans / Middle aged Idioma: En Revista: Vasc Med Asunto de la revista: ANGIOLOGIA Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos