Inhibiting C-4 Methyl Sterol Oxidase with Novel Diazaborines to Target Fungal Plant Pathogens.
ACS Chem Biol
; 17(6): 1343-1350, 2022 06 17.
Article
en En
| MEDLINE
| ID: mdl-35584803
With resistance to current agricultural fungicides rising, a great need has emerged for new antifungals with unexploited targets. In response, we report a novel series of diazaborines with potent activity against representative fungal plant pathogens. To identify their mode of action, we selected for resistant isolates using the model fungus Saccharomyces cerevisiae. Whole-genome sequencing of independent diazaborine-resistant lineages identified a recurring mutation in ERG25, which encodes a C-4 methyl sterol oxidase required for ergosterol biosynthesis in fungi. Haploinsufficiency and allele-swap experiments provided additional genetic evidence for Erg25 as the most biologically relevant target of our diazaborines. Confirming Erg25 as putative target, sterol profiling of compound-treated yeast revealed marked accumulation of the Erg25 substrate, 4,4-dimethylzymosterol and depletion of both its immediate product, zymosterol, as well as ergosterol. Encouraged by these mechanistic insights, the potential utility of targeting Erg25 with a diazaborine was demonstrated in soybean-rust and grape-rot models of fungal plant disease.
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Ergosterol
/
Oxigenasas de Función Mixta
Idioma:
En
Revista:
ACS Chem Biol
Año:
2022
Tipo del documento:
Article
País de afiliación:
Canadá