Your browser doesn't support javascript.
loading
Analysis of smooth pursuit eye movements in a clinical context by tracking the target and eyes.
Hirota, Masakazu; Kato, Kanako; Fukushima, Megumi; Ikeda, Yuka; Hayashi, Takao; Mizota, Atsushi.
Afiliación
  • Hirota M; Department of Orthoptics, Faculty of Medical Technology, Teikyo University, Itabashi, Tokyo, Japan. hirota.ortho@med.teikyo-u.ac.jp.
  • Kato K; Department of Ophthalmology, School of Medicine, Teikyo University, 2-11-1 Kaga, Itabashi, Tokyo, 173-8605, Japan. hirota.ortho@med.teikyo-u.ac.jp.
  • Fukushima M; Department of Orthoptics, Faculty of Medical Technology, Teikyo University, Itabashi, Tokyo, Japan.
  • Ikeda Y; Division of Orthoptics, Graduate School of Medical Care and Technology, Teikyo University, Itabashi, Tokyo, Japan.
  • Hayashi T; Department of Orthoptics, Faculty of Medical Technology, Teikyo University, Itabashi, Tokyo, Japan.
  • Mizota A; Department of Orthoptics, Faculty of Medical Technology, Teikyo University, Itabashi, Tokyo, Japan.
Sci Rep ; 12(1): 8501, 2022 05 19.
Article en En | MEDLINE | ID: mdl-35589979
In the evaluation of smooth pursuit eye movements (SPEMs), recording the stimulus onset time is mandatory. In the laboratory, the stimulus onset time is recorded by electrical signal or programming, and video-oculography (VOG) and the visual stimulus are synchronized. Nevertheless, because the examiner must manually move the fixation target, recording the stimulus onset time is challenging in daily clinical practice. Thus, this study aimed to develop an algorithm for evaluating SPEMs while testing the nine-direction eye movements without recording the stimulus onset time using VOG and deep learning-based object detection (single-shot multibox detector), which can predict the location and types of objects in a single image. The algorithm of peak fitting-based detection correctly classified the directions of target orientation and calculated the latencies and gains within the normal range while testing the nine-direction eye movements in healthy individuals. These findings suggest that the algorithm of peak fitting-based detection has sufficient accuracy for the automatic evaluation of SPEM in clinical settings.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Seguimiento Ocular Uniforme / Movimientos Oculares Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Sci Rep Año: 2022 Tipo del documento: Article País de afiliación: Japón

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Seguimiento Ocular Uniforme / Movimientos Oculares Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Sci Rep Año: 2022 Tipo del documento: Article País de afiliación: Japón