Your browser doesn't support javascript.
loading
PRI: Re-Analysis of a Public Mass Cytometry Dataset Reveals Patterns of Effective Tumor Treatments.
Hoang, Yen; Gryzik, Stefanie; Hoppe, Ines; Rybak, Alexander; Schädlich, Martin; Kadner, Isabelle; Walther, Dirk; Vera, Julio; Radbruch, Andreas; Groth, Detlef; Baumgart, Sabine; Baumgrass, Ria.
Afiliación
  • Hoang Y; German Rheumatism Research Center (DRFZ), A Leibniz Institute, Berlin, Germany.
  • Gryzik S; German Rheumatism Research Center (DRFZ), A Leibniz Institute, Berlin, Germany.
  • Hoppe I; German Rheumatism Research Center (DRFZ), A Leibniz Institute, Berlin, Germany.
  • Rybak A; German Rheumatism Research Center (DRFZ), A Leibniz Institute, Berlin, Germany.
  • Schädlich M; Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany.
  • Kadner I; German Rheumatism Research Center (DRFZ), A Leibniz Institute, Berlin, Germany.
  • Walther D; Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany.
  • Vera J; German Rheumatism Research Center (DRFZ), A Leibniz Institute, Berlin, Germany.
  • Radbruch A; Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany.
  • Groth D; Bioinformatics, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany.
  • Baumgart S; Laboratory of Systems Tumor Immunology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany.
  • Baumgrass R; German Rheumatism Research Center (DRFZ), A Leibniz Institute, Berlin, Germany.
Front Immunol ; 13: 849329, 2022.
Article en En | MEDLINE | ID: mdl-35592315
Recently, mass cytometry has enabled quantification of up to 50 parameters for millions of cells per sample. It remains a challenge to analyze such high-dimensional data to exploit the richness of the inherent information, even though many valuable new analysis tools have already been developed. We propose a novel algorithm "pattern recognition of immune cells (PRI)" to tackle these high-dimensional protein combinations in the data. PRI is a tool for the analysis and visualization of cytometry data based on a three or more-parametric binning approach, feature engineering of bin properties of multivariate cell data, and a pseudo-multiparametric visualization. Using a publicly available mass cytometry dataset, we proved that reproducible feature engineering and intuitive understanding of the generated bin plots are helpful hallmarks for re-analysis with PRI. In the CD4+T cell population analyzed, PRI revealed two bin-plot patterns (CD90/CD44/CD86 and CD90/CD44/CD27) and 20 bin plot features for threshold-independent classification of mice concerning ineffective and effective tumor treatment. In addition, PRI mapped cell subsets regarding co-expression of the proliferation marker Ki67 with two major transcription factors and further delineated a specific Th1 cell subset. All these results demonstrate the added insights that can be obtained using the non-cluster-based tool PRI for re-analyses of high-dimensional cytometric data.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Neoplasias Límite: Animals Idioma: En Revista: Front Immunol Año: 2022 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Neoplasias Límite: Animals Idioma: En Revista: Front Immunol Año: 2022 Tipo del documento: Article País de afiliación: Alemania