Tetraethylenepentamine-Coated ß Cyclodextrin Nanoparticles for Dual DNA and siRNA Delivery.
Pharmaceutics
; 14(5)2022 Apr 23.
Article
en En
| MEDLINE
| ID: mdl-35631507
Nucleic acid reagents, including plasmid-encoded genes and small interfering RNA (siRNA), are promising tools for validating gene function and for the development of therapeutic agents. Native ß-cyclodextrins (BCDs) have limited efficiency in gene delivery due to their instable complexes with nucleic acid. We hypothesized that cationic BCD nanoparticles could be an efficient carrier for both DNA and siRNA. Tetraethylenepentamine-coated ß-cyclodextrin (TEPA-BCD) nanoparticles were synthesized, characterized, and evaluated for targeted cell delivery of plasmid DNA and siRNA. The cationic TEPA coating provided ideal zeta potential and effective nucleic acid binding ability. When transfecting plasmid encoding green fluorescent protein (GFP) by TEPA-BCD, excellent GFP expression could be achieved in multiple cell lines. In addition, siRNA transfected by TEPA-BCD suppressed target GFP gene expression. We showed that TEPA-BCD internalization was mediated by energy-dependent endocytosis via both clathrin-dependent and caveolin-dependent endocytic pathways. TEPA-BCD nanoparticles provide an effective means of nucleic acid delivery and can act as potential carriers in future pharmaceutical application.
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Idioma:
En
Revista:
Pharmaceutics
Año:
2022
Tipo del documento:
Article
País de afiliación:
Taiwán