Your browser doesn't support javascript.
loading
Bimetallic nanozyme mediated urine glucose monitoring through discriminant analysis of colorimetric signal.
Naveen Prasad, Sanjana; Anderson, Samuel R; Joglekar, Mugdha V; Hardikar, Anandwardhan A; Bansal, Vipul; Ramanathan, Rajesh.
Afiliación
  • Naveen Prasad S; Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory (NBRL), School of Science, RMIT University, GPO Box 2476, Melbourne, VIC, 3000, Australia.
  • Anderson SR; Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory (NBRL), School of Science, RMIT University, GPO Box 2476, Melbourne, VIC, 3000, Australia.
  • Joglekar MV; Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Campbelltown, NSW, Australia.
  • Hardikar AA; Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Campbelltown, NSW, Australia.
  • Bansal V; Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory (NBRL), School of Science, RMIT University, GPO Box 2476, Melbourne, VIC, 3000, Australia. Electronic address: vipul.bansal@rmit.edu.au.
  • Ramanathan R; Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory (NBRL), School of Science, RMIT University, GPO Box 2476, Melbourne, VIC, 3000, Australia. Electronic address: rajesh.ramanathan@rmit.edu.au.
Biosens Bioelectron ; 212: 114386, 2022 Sep 15.
Article en En | MEDLINE | ID: mdl-35635971
ABSTRACT
The ability to detect glucose concentrations in human urine offers a non-invasive approach to monitor changes in blood glucose, kidney health and vascular complications associated with diabetes. We show the potential of employing catalytically active nanoparticles directly grown on textiles to produce a dose-dependent colorimetric sensor for glucose. We use a galvanic replacement (GR) reaction for the synthesis of bimetallic nanoparticles. Here, Cu nanoparticles act as a sacrificial template that undergoes a spontaneous electroless GR reaction when exposed to metal ions of gold, silver, platinum, and palladium to form bimetallic Cu-M nanoparticles (M = Au, Ag, Pt, or Pd). The evaluation of their intrinsic peroxidase-mimicking catalytic activity ("nanozyme") in comparison to that of the Cu nanozyme revealed that the bimetallic systems show a higher catalytic rate with the Cu-Pt nanozyme showing the highest catalytic efficiency. This property of the Cu-Pt nanozyme was then utilized to detect glucose in human urine using the glucose oxidase enzyme as a molecular recognition element. A key outcome of our study is the ability to detect urine glucose without requiring sample dilution which is an advantage over the gold standard GOx-POx method and significantly more reliable performance over commercial urine glucose dipsticks. The difference in the intensity of the colorimetric response between different glucose concentrations further allowed this sensor system to be combined with digital imaging tools for multivariate analysis.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Técnicas Biosensibles / Nanopartículas del Metal / Glucosuria Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Biosens Bioelectron Asunto de la revista: BIOTECNOLOGIA Año: 2022 Tipo del documento: Article País de afiliación: Australia

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Técnicas Biosensibles / Nanopartículas del Metal / Glucosuria Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Biosens Bioelectron Asunto de la revista: BIOTECNOLOGIA Año: 2022 Tipo del documento: Article País de afiliación: Australia