Your browser doesn't support javascript.
loading
Microwave-Frequency Scanning Gate Microscopy of a Si/SiGe Double Quantum Dot.
Denisov, Artem O; Oh, Seong W; Fuchs, Gordian; Mills, Adam R; Chen, Pengcheng; Anderson, Christopher R; Gyure, Mark F; Barnard, Arthur W; Petta, Jason R.
Afiliación
  • Denisov AO; Department of Physics, Princeton University, Princeton, New Jersey 08544, United States.
  • Oh SW; Department of Physics, Princeton University, Princeton, New Jersey 08544, United States.
  • Fuchs G; Department of Physics, Princeton University, Princeton, New Jersey 08544, United States.
  • Mills AR; Department of Physics, Princeton University, Princeton, New Jersey 08544, United States.
  • Chen P; Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, New Jersey 08544, United States.
  • Anderson CR; Department of Mathematics, University of California, Los Angeles, California 90095, United States.
  • Gyure MF; Center for Quantum Science and Engineering, University of California, Los Angeles, California 90095, United States.
  • Barnard AW; Department of Physics, University of Washington, 98195 Seattle, Washington United States.
  • Petta JR; Department of Materials Science and Engineering, University of Washington, 98195 Seattle, Washington United States.
Nano Lett ; 22(12): 4807-4813, 2022 06 22.
Article en En | MEDLINE | ID: mdl-35678453
Conventional transport methods provide quantitative information on spin, orbital, and valley states in quantum dots but lack spatial resolution. Scanning tunneling microscopy, on the other hand, provides exquisite spatial resolution at the expense of speed. Working to combine the spatial resolution and energy sensitivity of scanning probe microscopy with the speed of microwave measurements, we couple a metallic tip to a Si/SiGe double quantum dot (DQD) that is integrated with a charge detector. We first demonstrate that the dc-biased tip can be used to change the occupancy of the DQD. We then apply microwaves through the tip to drive photon-assisted tunneling (PAT). We infer the DQD level diagram from the frequency and detuning dependence of the tunneling resonances. These measurements allow the resolution of ∼65 µeV excited states, an energy consistent with valley splittings in Si/SiGe. This work demonstrates the feasibility of scanning gate experiments with Si/SiGe devices.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Puntos Cuánticos Idioma: En Revista: Nano Lett Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Puntos Cuánticos Idioma: En Revista: Nano Lett Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos