Your browser doesn't support javascript.
loading
Energy Deposition around Swift Carbon-Ion Tracks in Liquid Water.
de Vera, Pablo; Taioli, Simone; Trevisanutto, Paolo E; Dapor, Maurizio; Abril, Isabel; Simonucci, Stefano; Garcia-Molina, Rafael.
Afiliación
  • de Vera P; Departamento de Física, Centro de Investigación en Óptica y Nanofísica, Universidad de Murcia, 30100 Murcia, Spain.
  • Taioli S; European Centre for Theoretical Studies in Nuclear Physics and Related Areas (ECT*), Bruno Kessler Foundation, 38123 Povo, Italy.
  • Trevisanutto PE; European Centre for Theoretical Studies in Nuclear Physics and Related Areas (ECT*), Bruno Kessler Foundation, 38123 Povo, Italy.
  • Dapor M; Trento Institute for Fundamental Physics and Applications (TIFPA-INFN), 38123 Trento, Italy.
  • Abril I; Dipartimento di Ingegneria, Unità di Ricerca di Fisica non Lineare e Modelli Matematici, Università Campus Bio-Medico, Via Alvaro del Portillo 21, 00154 Roma, Italy.
  • Simonucci S; European Centre for Theoretical Studies in Nuclear Physics and Related Areas (ECT*), Bruno Kessler Foundation, 38123 Povo, Italy.
  • Garcia-Molina R; Trento Institute for Fundamental Physics and Applications (TIFPA-INFN), 38123 Trento, Italy.
Int J Mol Sci ; 23(11)2022 May 30.
Article en En | MEDLINE | ID: mdl-35682798
Energetic carbon ions are promising projectiles used for cancer radiotherapy. A thorough knowledge of how the energy of these ions is deposited in biological media (mainly composed of liquid water) is required. This can be attained by means of detailed computer simulations, both macroscopically (relevant for appropriately delivering the dose) and at the nanoscale (important for determining the inflicted radiobiological damage). The energy lost per unit path length (i.e., the so-called stopping power) of carbon ions is here theoretically calculated within the dielectric formalism from the excitation spectrum of liquid water obtained from two complementary approaches (one relying on an optical-data model and the other exclusively on ab initio calculations). In addition, the energy carried at the nanometre scale by the generated secondary electrons around the ion's path is simulated by means of a detailed Monte Carlo code. For this purpose, we use the ion and electron cross sections calculated by means of state-of-the art approaches suited to take into account the condensed-phase nature of the liquid water target. As a result of these simulations, the radial dose around the ion's path is obtained, as well as the distributions of clustered events in nanometric volumes similar to the dimensions of DNA convolutions, contributing to the biological damage for carbon ions in a wide energy range, covering from the plateau to the maximum of the Bragg peak.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Carbono / Agua Tipo de estudio: Health_economic_evaluation Idioma: En Revista: Int J Mol Sci Año: 2022 Tipo del documento: Article País de afiliación: España

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Carbono / Agua Tipo de estudio: Health_economic_evaluation Idioma: En Revista: Int J Mol Sci Año: 2022 Tipo del documento: Article País de afiliación: España