Your browser doesn't support javascript.
loading
Estimating the localization spread function of static single-molecule localization microscopy images.
Shaw, Thomas R; Fazekas, Frank J; Kim, Sumin; Flanagan-Natoli, Jennifer C; Sumrall, Emily R; Veatch, Sarah L.
Afiliación
  • Shaw TR; Program in Biophysics, University of Michigan, Ann Arbor, Michigan; Program in Applied Physics, University of Michigan, Ann Arbor, Michigan.
  • Fazekas FJ; Program in Biophysics, University of Michigan, Ann Arbor, Michigan.
  • Kim S; Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan.
  • Flanagan-Natoli JC; Program in Biophysics, University of Michigan, Ann Arbor, Michigan.
  • Sumrall ER; Program in Biophysics, University of Michigan, Ann Arbor, Michigan.
  • Veatch SL; Program in Biophysics, University of Michigan, Ann Arbor, Michigan; Program in Applied Physics, University of Michigan, Ann Arbor, Michigan. Electronic address: sveatch@umich.edu.
Biophys J ; 121(15): 2906-2920, 2022 08 02.
Article en En | MEDLINE | ID: mdl-35787472
ABSTRACT
Single-molecule localization microscopy (SMLM) permits the visualization of cellular structures an order of magnitude smaller than the diffraction limit of visible light, and an accurate, objective evaluation of the resolution of an SMLM data set is an essential aspect of the image processing and analysis pipeline. Here, we present a simple method to estimate the localization spread function (LSF) of a static SMLM data set directly from acquired localizations, exploiting the correlated dynamics of individual emitters and properties of the pair autocorrelation function evaluated in both time and space. The method is demonstrated on simulated localizations, DNA origami rulers, and cellular structures labeled by dye-conjugated antibodies, DNA-PAINT, or fluorescent fusion proteins. We show that experimentally obtained images have LSFs that are broader than expected from the localization precision alone, due to additional uncertainty accrued when localizing molecules imaged over time.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Imagen Individual de Molécula / Microscopía Idioma: En Revista: Biophys J Año: 2022 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Imagen Individual de Molécula / Microscopía Idioma: En Revista: Biophys J Año: 2022 Tipo del documento: Article